Re: Long-Term Testosterone Supplementation in Older Men Attenuates Age-Related Decline in Aerobic Capacity

2019 ◽  
Vol 201 (1) ◽  
pp. 14-14
Author(s):  
Allen D. Seftel
2018 ◽  
Vol 103 (8) ◽  
pp. 2861-2869 ◽  
Author(s):  
Tinna Traustadóttir ◽  
S Mitchell Harman ◽  
Panayiotis Tsitouras ◽  
Karol M Pencina ◽  
Zhuoying Li ◽  
...  

Abstract Context Testosterone increases skeletal muscle mass and strength, but long-term effects of testosterone supplementation on aerobic capacity, or peak oxygen uptake (V̇O2peak), in healthy older men with low testosterone have not been evaluated. Objective To determine the effects of testosterone supplementation on V̇O2peak during incremental cycle ergometry. Design A double-blind, randomized, placebo-controlled, parallel-group trial (Testosterone’s Effects on Atherosclerosis Progression in Aging Men). Setting Exercise physiology laboratory. Participants Healthy men aged ≥ 60 years with total testosterone levels of 100 to 400 ng/dL (3.5 to 13.9 nmol/L) or free testosterone levels < 50 pg/mL (174 pmol/L). Interventions Randomization to 1% transdermal testosterone gel adjusted to achieve serum levels of 500 to 950 ng/dL or placebo applied daily for 3 years. Main Outcome Measures Change in V̇O2peak. Results Mean (±SD) baseline V̇O2peak was 24.2 ± 5.2 and 23.6 ± 5.6 mL/kg/min for testosterone and placebo, respectively. V̇O2peak did not change in men treated with testosterone but fell significantly in men receiving placebo (average 3-year decrease, 0.88 mL/kg/min; 95% CI, −1.39 to 0.38 mL/kg/min; P = 0.035); the difference in change in V̇O2peak between groups was significant (average 3-year difference, 0.91 mL/kg/min; 95% CI, 0.010 to 0.122 mL/kg/min; P = 0.008). The 1-g/dL mean increase in hemoglobin (P < 0.001) was significantly associated with changes in V̇O2peak in testosterone-treated men. Conclusion The mean 3-year change in V̇O2peak was significantly smaller in men treated with testosterone than in men receiving placebo and was associated with increases in hemoglobin. The difference in V̇O2peak change between groups may indicate attenuation of its expected age-related decline; the clinical meaningfulness of the modest treatment effect remains to be determined.


Antioxidants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 25
Author(s):  
Lara Macchioni ◽  
Davide Chiasserini ◽  
Letizia Mezzasoma ◽  
Magdalena Davidescu ◽  
Pier Luigi Orvietani ◽  
...  

Age-related retinal degenerations, including age-related macular degeneration (AMD), are caused by the loss of retinal pigmented epithelial (RPE) cells and photoreceptors. The pathogenesis of AMD, deeply linked to the aging process, also involves oxidative stress and inflammatory responses. However, the molecular mechanisms contributing to the shift from healthy aging to AMD are still poorly understood. Since RPE cells in the retina are chronically exposed to a pro-oxidant microenvironment throughout life, we simulated in vivo conditions by growing ARPE-19 cells in the presence of 10 μM H2O2 for several passages. This long-term oxidative insult induced senescence in ARPE-19 cells without affecting cell proliferation. Global proteomic analysis revealed a dysregulated expression in proteins involved in antioxidant response, mitochondrial homeostasis, and extracellular matrix organization. The analyses of mitochondrial functionality showed increased mitochondrial biogenesis and ATP generation and improved response to oxidative stress. The latter, however, was linked to nuclear factor-κB (NF-κB) rather than nuclear factor erythroid 2–related factor 2 (Nrf2) activation. NF-κB hyperactivation also resulted in increased pro-inflammatory cytokines expression and inflammasome activation. Moreover, in response to additional pro-inflammatory insults, senescent ARPE-19 cells underwent an exaggerated inflammatory reaction. Our results indicate senescence as an important link between chronic oxidative insult and detrimental chronic inflammation, with possible future repercussions for therapeutic interventions.


Author(s):  
Sujeong Yang ◽  
Sylvain Gigout ◽  
Angelo Molinaro ◽  
Yuko Naito-Matsui ◽  
Sam Hilton ◽  
...  

AbstractPerineuronal nets (PNNs) are chondroitin sulphate proteoglycan-containing structures on the neuronal surface that have been implicated in the control of neuroplasticity and memory. Age-related reduction of chondroitin 6-sulphates (C6S) leads to PNNs becoming more inhibitory. Here, we investigated whether manipulation of the chondroitin sulphate (CS) composition of the PNNs could restore neuroplasticity and alleviate memory deficits in aged mice. We first confirmed that aged mice (20-months) showed memory and plasticity deficits. They were able to retain or regain their cognitive ability when CSs were digested or PNNs were attenuated. We then explored the role of C6S in memory and neuroplasticity. Transgenic deletion of chondroitin 6-sulfotransferase (chst3) led to a reduction of permissive C6S, simulating aged brains. These animals showed very early memory loss at 11 weeks old. Importantly, restoring C6S levels in aged animals rescued the memory deficits and restored cortical long-term potentiation, suggesting a strategy to improve age-related memory impairment.


2008 ◽  
Vol 97 (7) ◽  
pp. 583-591 ◽  
Author(s):  
Liqian Liu ◽  
Ann L. Coker ◽  
Xianglin L. Du ◽  
Janice N. Cormier ◽  
Charles E. Ford ◽  
...  

2016 ◽  
Vol 101 (6) ◽  
pp. 2562-2569 ◽  
Author(s):  
Thomas W. Storer ◽  
Shalender Bhasin ◽  
Thomas G. Travison ◽  
Karol Pencina ◽  
Renee Miciek ◽  
...  

Abstract Context: Testosterone increases skeletal muscle mass and strength, but the effects of testosterone on aerobic performance in mobility-limited older men have not been evaluated. Objective: To determine the effects of testosterone supplementation on aerobic performance, assessed as peak oxygen uptake (V̇O2peak) and gas exchange lactate threshold (V̇O2θ), during symptom-limited incremental cycle ergometer exercise. Design: Subgroup analysis of the Testosterone in Older Men with Mobility Limitations Trial. Setting: Exercise physiology laboratory in an academic medical center. Participants: Sixty-four mobility-limited men 65 years or older with low total (100–350 ng/dL) or free (&lt;50 pg/dL) testosterone. Interventions: Participants were randomized to receive 100-mg testosterone gel or placebo gel daily for 6 months. Main Outcome Measures: V̇O2peak and V̇O2θ from a symptom-limited cycle exercise test. Results: Mean (SD) baseline V̇O2peak was 20.5 (4.3) and 19.9 (4.7) mL/kg/min for testosterone and placebo, respectively. V̇O2peak increased by 0.83 (2.4) mL/kg/min in testosterone but decreased by −0.89 (2.5) mL/kg/min in placebo (P = .035); between group difference in change in V̇O2peak was significant (P = .006). This 6-month reduction in placebo was greater than the expected −0.4-mL/kg/min/y rate of decline in the general population. V̇O2θ did not change significantly in testosterone but decreased by 1.1 (1.8) mL/kg/min in placebo, P = .011 for between-group comparisons. Hemoglobin increased by 1.0 ± 3.5 and 0.1 ± 0.8 g/dL in testosterone and placebo groups, respectively. Conclusion: Testosterone supplementation in mobility-limited older men increased hemoglobin and attenuated the age-related declines in V̇O2peak and V̇O2θ. Long-term intervention studies are needed to determine the durability of this effect.


Sign in / Sign up

Export Citation Format

Share Document