Astrocytic N-Myc Downstream-regulated Gene–2 Is Involved in Nuclear Transcription Factor κB–mediated Inflammation Induced by Global Cerebral Ischemia

2018 ◽  
Vol 128 (3) ◽  
pp. 574-586 ◽  
Author(s):  
You-liang Deng ◽  
Yu-long Ma ◽  
Zeng-li Zhang ◽  
Li-xia Zhang ◽  
Hang Guo ◽  
...  

Abstract Background Inflammation is a key element in the pathophysiology of cerebral ischemia. This study investigated the role of N-Myc downstream-regulated gene–2 in nuclear transcription factor κB–mediated inflammation in ischemia models. Methods Mice (n = 6 to 12) with or without nuclear transcription factor κB inhibitor pyrrolidinedithiocarbamate pretreatment were subjected to global cerebral ischemia for 20 min. Pure astrocyte cultures or astrocyte-neuron cocultures (n = 6) with or without pyrrolidinedithiocarbamate pretreatment were exposed to oxygen-glucose deprivation for 4 h or 2 h. Astrocytic nuclear transcription factor κB and N-Myc downstream-regulated gene–2 expression, proinflammatory cytokine secretion, neuronal apoptosis and survival, and memory function were analyzed at different time points after reperfusion or reoxygenation. Proinflammatory cytokine secretion was also studied in lentivirus-transfected astrocyte lines after reoxygenation. Results Astrocytic nuclear transcription factor κB and N-Myc downstream-regulated gene–2 expression and proinflammatory cytokine secretion increased after reperfusion or reoxygenation. Pyrrolidinedithiocarbamate pretreatment significantly reduced N-Myc downstream-regulated gene–2 expression and proinflammatory cytokine secretion in vivo and in vitro, reduced neuronal apoptosis induced by global cerebral ischemia/reperfusion (from 65 ± 4% to 47 ± 4%, P = 0.0375) and oxygen-glucose deprivation/reoxygenation (from 45.6 ± 0.2% to 22.0 ± 4.0%, P < 0.001), and improved memory function in comparison to vehicle-treated control animals subjected to global cerebral ischemia/reperfusion. N-Myc downstream-regulated gene–2 lentiviral knockdown reduced the oxygen-glucose deprivation-induced secretion of proinflammatory cytokines. Conclusions Astrocytic N-Myc downstream-regulated gene–2 is up-regulated after cerebral ischemia and is involved in nuclear transcription factor κB–mediated inflammation. Pyrrolidinedithiocarbamate alleviates ischemia-induced neuronal injury and hippocampal-dependent cognitive impairment by inhibiting increases in N-Myc downstream-regulated gene–2 expression and N-Myc downstream-regulated gene–2—mediated inflammation.

2020 ◽  
pp. 096032712095424
Author(s):  
Wenxiong Liu ◽  
Haikang Zhao ◽  
Yuqiang Su ◽  
Kefeng Wang ◽  
Jing Li ◽  
...  

Senescence marker protein 30 (SMP30) is a senescence marker molecule and identified as a calcium regulatory protein. Currently, SMP30 has emerged as a cytoprotective protein in a wide range of cell types. However, the role of SMP30 in regulating neuronal survival during cerebral ischemia/reperfusion injury remains unclear. In the present study, we aimed to investigate the biological function and regulatory mechanism of SMP30 on neuronal survival using a cellular model induced by oxygen-glucose deprivation/reoxygenation (OGD/R). The results showed that SMP30 expression was significantly decreased by OGD/R exposure in neurons. Functional experiments demonstrated that SMP30 overexpression significantly rescued the decreased cell viability and attenuated the apoptosis and reactive oxygen species generation in OGD/R-exposed neurons. By contrast, SMP30 knockdown exhibited the opposite effect. Mechanism research revealed that SMP30 overexpression contributed to the activation of nuclear factor erythroid 2-related factor (Nrf2)/antioxidant response element (ARE) signaling associated with downregulation of Kelch-like ECH-associated protein (Keap1). Keap1 overexpression or Nrf2 silencing significantly reversed SMP30-mediated neuroprotection against OGD/R-induced injury. Overall, these findings demonstrate that SMP30 overexpression protects neurons from OGD/R-induced apoptosis and oxidative stress by enhancing Nrf2/ARE antioxidant signaling via inhibition of Keap1. These data highlight the importance of the SMP30/Keap1/Nrf2/ARE signaling axis in regulating neuronal survival during cerebral ischemia/reperfusion injury.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Ying Jiang ◽  
Hongmei Sun ◽  
Zhiqi Yin ◽  
Jun Yan

Objective. To investigate the effect of tea polysaccharides (TPS) mediated by miR-375/SRXN1 axis on mice with cerebral ischemia-reperfusion injury and proliferation and apoptosis of astrocytes (AS) conducted with oxygen-glucose deprivation/reoxygenation (OGD/R). Methods. Mouse model of middle cerebral artery occlusion (MCAO) and OGD/R-induced AS injury model were established; brain obstruction volume was measured by TTC staining; dry/wet weight ratio was used for measuring brain water content; hydrogen peroxide (H2O2) content in brain tissue was measured by H2O2 assay kit; cell viability and apoptosis rate were detected by MTT assay and flow cytometry, respectively; the expression level of miR-375 in OGD/R-AS was detected using qPCR; dual-luciferase reporter assay was used to verify the targeting relationship between miR-375 and SRXN1; mRNA levels of miR-375, SRXN1, Bcl-2, Bax, and caspase-3 were measured by qPCR; the protein levels of SRXN1, Bcl-2, Bax, and caspase-3 were measured by Western blotting. Results. The volume of cerebral obstruction, brain water content and H2O2 content in mice decreased gradually with the increase of TPS concentration. TPS treatment in vitro could effectively improve OGD/R-AS viability and reduce the apoptotic rate; overexpression of miR-375 inhibited AS viability but increased the apoptotic rate; TPS treatment resulted in a decrease in the expression of miR-375 in OGD/R-AS; MiR-375 targeted SRXN1 in AS; inhibition of miR-375 expression significantly upregulated SRXN1 levels; TPS treatment with simultaneous overexpression of SRXN1 significantly increased OGD/R-AS activity and reduced apoptosis; however, TPS treatment with simultaneous overexpression of SRXN1 and miR-375 resulted in no significant difference in cell viability and apoptosis rate compared with the control group. Conclusion. TPS reduces astrocyte injury induced by cerebral ischemia-reperfusion in mice by regulating the miR-375/SRXN1 molecular axis.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Bingwu Zhong ◽  
Zhiping Hu ◽  
Jieqiong Tan ◽  
Tonglin Lu ◽  
Qiang Lei ◽  
...  

Cerebral ischemia-reperfusion injury plays an important role in the development of tissue injury after acute ischemic stroke. Finding effective neuroprotective agents has become a priority in the treatment of ischemic stroke. The Golgi apparatus (GA) is a pivotal organelle and its protection is an attractive target in the treatment of cerebral ischemia-reperfusion injury. Protective effects of Hsp20, a potential cytoprotective agent due to its chaperone-like activity and involvement in regulation of many vital processes, on GA were assessed in an ischemia-reperfusion injury model. Mouse neuroblastoma Neuro2a (N2a) cells were subjected to oxygen-glucose deprivation/reperfusion (OGDR) insult. OGDR induces Golgi fragmentation, apoptosis, and p115 cleavage in N2a cells. However, transfection with Hsp20 significantly attenuates OGDR-induced Golgi fragmentation and apoptosis. Hsp20 interacts with Bax, decreases FasL and Bax expression, and inhibits caspases 3 and p115 cleavage in N2a cells exposed to OGDR. Our data demonstrate that increased Hsp20 expression protects against OGDR-induced Golgi fragmentation and apoptosis, likely through interaction with Bax and subsequent amelioration of the OGDR-induced elevation in p115 cleavage via the Fas/FasL signaling pathway. This neuroprotective potential of Hsp20 against OGDR insult and the underlying mechanism will pave the way for its potential clinical application for cerebral ischemia-reperfusion related disorders.


2020 ◽  
pp. 096032712098422
Author(s):  
Jing Xu ◽  
Qinyue Guo ◽  
Kang Huo ◽  
Yinxue Song ◽  
Na Li ◽  
...  

JZL184 is a selective inhibitor of monoacylglycerol lipase (MAGL) that has neuroprotective effect. However, the role of JZL184 in cerebral ischemia/reperfusion (I/R) injury and the exact mechanism have not been fully understood. This study was designed to elucidate the role of JZL184 in cerebral I/R injury induced by oxygen-glucose deprivation/reoxygenation (OGD/R) in hippocampal neurons. Hippocampal neurons were pretreated with various concentrations of JZL184 for 2 h, followed by OGD for 3 h and reoxygen for 24 h. Our results showed that JZL184 improved cell viability in hippocampal neurons in response to OGD/R. JZL184 treatment significantly inhibited the production of reactive oxygen species (ROS) and malondialdehyde (MDA), as well as increased superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities in OGD/R-induced hippocampal neurons. The increased TNF-α, IL-1β, and IL-6 productions in OGD/R-induced hippocampal neurons were decreased after treatment with JZL184. Moreover, the OGD/R-caused intense TUNEL staining in hippocampal neurons was attenuated by JZL184. JZL184 treatment prevented OGD/R-caused increases in bax and cleaved caspase-3 expression and a decrease in bcl-2 expression. Furthermore, JZL184 treatment significantly promoted the activation of Nrf2/ARE signaling pathway in OGD/R-induced hippocampal neurons. Additionally, silencing of Nrf2 reversed the protective effect of JZL184 on hippocampal neurons under OGD/R condition. Taken together, these findings suggested that JZL184 exerted protective effect against OGD/R-induced injury in hippocampal neurons via activating Nrf2/ARE signaling pathway, which provided in vitro experimental support for the therapeutic benefit of JZL184 in cerebral ischemia.


Sign in / Sign up

Export Citation Format

Share Document