proinflammatory cytokine
Recently Published Documents


TOTAL DOCUMENTS

1765
(FIVE YEARS 272)

H-INDEX

113
(FIVE YEARS 9)

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 186
Author(s):  
Guan-Xuan Wu ◽  
Chun-Yu Chen ◽  
Chun-Shien Wu ◽  
Lain-Chyr Hwang ◽  
Shan-Wei Yang ◽  
...  

Osteoarthritis (OA) is a joint disorder characterized by the progressive degeneration of articular cartilage. The phenotype and metabolism behavior of chondrocytes plays crucial roles in maintaining articular cartilage function. Chondrocytes dedifferentiate and lose their cartilage phenotype after successive subcultures or inflammation and synthesize collagen I and X (COL I and COL X). Farnesol, a sesquiterpene compound, has an anti-inflammatory effect and promotes collagen synthesis. However, its potent restoration effects on differentiated chondrocytes have seldom been evaluated. The presented study investigated farnesol’s effect on phenotype restoration by examining collagen and glycosaminoglycan (GAG) synthesis from dedifferentiated chondrocytes. The results indicated that chondrocytes gradually dedifferentiated through cellular morphology change, reduced expressions of COL II and SOX9, increased the expression of COL X and diminished GAG synthesis during four passages of subcultures. Pure farnesol and hyaluronan-encapsulated farnesol nanoparticles promote COL II synthesis. GAG synthesis significantly increased 2.5-fold after a farnesol treatment of dedifferentiated chondrocytes, indicating the restoration of chondrocyte functions. In addition, farnesol drastically increased the synthesis of COL II (2.5-fold) and GAG (15-fold) on interleukin-1β-induced dedifferentiated chondrocytes. A significant reduction of COL I, COL X and proinflammatory cytokine prostaglandin E2 was observed. In summary, farnesol may serve as a therapeutic agent in OA treatment.


Author(s):  
Yafei Rao ◽  
Xiaoyan Gai ◽  
Yanqing Le ◽  
Jing Xiong ◽  
Yujia Liu ◽  
...  

AimSmoker COPD patients with chest radiological signs of prior tuberculosis (TB) showed more severe lung damage, but the mechanisms remain unclear. Emerging evidence has implicated NK cells in the pathogenesis of both COPD and TB. The purpose of this study was to delineate the profile and cytokine production of NK-cell subpopulations and their immunometabolic changes after exposure to both cigarette smoke (CS) and Mycobacterium tuberculosis(MTB).MethodsWe profiled NK-cell subpopulations in terms of percentage and cytokine production by flow cytometry in smoker patients with pulmonary TB (PTB). In an in vitro coexposure model, we investigated proinflammatory cytokine production, glycolytic influx, and oxidative phosphorylation of NK cells under CS extract (CSE) and PPD costimulation.ResultsPeripheral blood NK cells in smoker patients with active PTB (CS+PTB group) showed altered proportion of subpopulations and excessive proinflammatory cytokine expressions. In vitro, CSE- and PPD-coexposed NK-92 cells displayed enhanced proinflammatory cytokine production, concurrent with decreased glycolytic influx and oxidative phosphorylation.ConclusionSmoker patients with active PTB showed enhanced proinflammatory cytokine expression within altered NK cell subpopulations. CSE and PPD coexposure induced heightened cytokine production concurrent with impaired cell metabolism in NK cells. These novel data suggest a potential role of NK cells in the pathogenesis of lung injury in subjects with coexposure to CS and TB.


Author(s):  
Ana Carolina Silva Bitencourt ◽  
Rodolfo Pessato Timóteo ◽  
Rodrigo Bazan ◽  
Marcos Vinícius Silva ◽  
Luiz Gonzaga da Silveira Filho ◽  
...  

2021 ◽  
Vol 19 ◽  
Author(s):  
Mini P. Sajan ◽  
Michael Leitges ◽  
Colin Park ◽  
David M. Diamond ◽  
Jin Wu ◽  
...  

Βackground: β-Amyloid precursor protein-cleaving enzyme-1 (BACE1) initiates the production of Aβ-peptides that form Aβ-plaque in Alzheimer’s disease. Methods: Reportedly, acute insulin treatment in normal mice, and hyperinsulinemia in high-fat-fed (HFF) obese/diabetic mice, increase BACE1 activity and levels of Aβ-peptides and phospho- -thr-231-tau in the brain; moreover, these effects are blocked by PKC-λ/ι inhibitors. However, as chemical inhibitors may affect unsuspected targets, we presently used knockout methodology to further examine PKC-λ/ι requirements. We found that total-body heterozygous PKC-λ knockout reduced acute stimulatory effects of insulin and chronic effects of hyperinsulinemia in HFF/obese/diabetic mice, on brain PKC-λ activity and production of Aβ1-40/42 and phospho-thr-231-tau. This protection in HFF mice may reflect that hepatic PKC-λ haploinsufficiency prevents the development of glucose intolerance and hyperinsulinemia. Results: On the other hand, heterozygous knockout of PKC-λ markedly reduced brain levels of BACE1 protein and mRNA, and this may reflect diminished activation of nuclear factor kappa-B (NFκB), which is activated by PKC-λ and increases BACE1 and proinflammatory cytokine transcription. Accordingly, whereas intravenous administration of aPKC inhibitor diminished aPKC activity and BACE1 levels by 50% in the brain and 90% in the liver, nasally-administered inhibitor reduced aPKC activity and BACE1 mRNA and protein levels by 50-70% in the brain while sparing the liver. Additionally, 24-hour insulin treatment in cultured human-derived neurons increased NFκB activity and BACE1 levels, and these effects were blocked by various PKC-λ/ι inhibitors. Conclusion: PKC-λ/ι controls NFκB activity and BACE1 expression; PKC-λ/ι inhibitors may be used nasally to target brain PKC-λ/ι or systemically to block both liver and brain PKC-λ/ι, to regulate NFκB-dependent BACE1 and proinflammatory cytokine expression.


2021 ◽  
Vol 22 (24) ◽  
pp. 13496
Author(s):  
Paweena Dana ◽  
Ryusho Kariya ◽  
Worachart Lert-itthiporn ◽  
Wunchana Seubwai ◽  
Saowaluk Saisomboon ◽  
...  

Cholangiocarcinoma (CCA), an aggressive cancer of bile ducts, is a well-known chronic inflammation-related disease. The major impediment in CCA treatment is limited treatment options for advanced disease; hence, an alternative is urgently required. The role of CD147 on cytokine production has been observed in inflammation-related diseases, but not in CCA. Therefore, this study was focused on CD147-promoting proinflammatory cytokine production and functions. Proinflammatory cytokine profiles were compared between CD147 expressing CCA cells and CD147 knockout cells (CD147 KO). Three cytokines, namely interleukin (IL)-6, IL-8, and granulocyte–monocyte colony-stimulating factor (GM-CSF), were dramatically diminished in CD147 KO clones. The involvement of the CD147-related cytokines in CCA invasion was established. CD147-promoted IL-6, IL-8, and GM-CSF secretions were regulated by NF-κB nuclear translocation, Akt activation, and p38 phosphorylation. CD147-fostering IL-6 production was dependent on soluble CD147, CD147 homophilic interaction, and NF-κB function. The overexpression of specific genes in CCA tissues compared to normal counterparts emphasized the clinical importance of these molecules. Altogether, CD147-potentiated proinflammatory cytokine production leading to CCA cell invasion is shown for the first time in the current study. This suggests that modulation of CD147-related inflammation might be a promising choice for advanced CCA treatment.


Hematology ◽  
2021 ◽  
Vol 2021 (1) ◽  
pp. 463-468
Author(s):  
Elizabeth A. Traxler ◽  
Elizabeth O. Hexner

Abstract Enthusiasm about interferons for the treatment of myeloproliferative neoplasms has recently arisen. How does a nontargeted therapy selectively target the malignant clone? Many foundational questions about interferon treatment are unanswered, including who, when, and for how long do we treat. Using an individual case, this review touches on gaps in risk assessment in polycythemia vera (PV) and essential thrombocythemia (ET) and the history of treatment with interferons. How is it that this proinflammatory cytokine effectively treats ET and PV, themselves proinflammatory states? We summarize existing mechanistic and clinical data, the molecular context as a modifier for treatment response, the establishment of treatment goals, and the challenges that lie ahead.


2021 ◽  
Vol 15 (11) ◽  
pp. 1630-1639
Author(s):  
Sukayna Fadlallah ◽  
Marcel S Sham Eddin ◽  
Elias A Rahal

Introduction: Numerous reviews, commentaries and opinion pieces have suggested targeting IL-17A as part of managing Coronavirus disease 2019 (COVID-19), the notorious pandemic caused by the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). IL-17A is a proinflammatory cytokine attributed with homeostatic roles but that is also involved in autoimmune disease pathogenesis. While some studies have reported an increase in IL-17A in COVID-19 cases, no significant associations were found by others. Hence, we undertook this meta-analysis to study serum IL-17A levels in COVID-19 patients in relation to disease severity. Methodology: Multiple databases were systematically reviewed for literature published on the topic from January 1, 2019 to April 30, 2021. A random effects model was used to calculate weighted mean differences (WMDs) and 95% confidence interval (CIs) as well as the


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Jing Zhang ◽  
Yiyang Hong ◽  
Zhenyu Liuyang ◽  
Haozhe Li ◽  
Zhongyang Jiang ◽  
...  

Radiation-induced oral mucositis is a major adverse event of radiotherapy. Severe oral mucositis may cause unwanted interruption in radiotherapy and reduce long-term survival in cancer patients receiving radiotherapy, but until now, there have been no effective options for preventing radiation-induced oral mucositis. Quercetin is a flavonoid that is widely found in food species and has anti-inflammatory, antioxidant, and anticancer activities. In this study, we investigated a new role of quercetin in preventing radiation-induced oral mucositis. Quercetin exerted preventive effects against radiation-induced oral mucositis induced by single-dose (25 Gy) ionizing radiation or fractionated ionizing radiation ( 8   Gy × 3 ) in C57BL/6 mice and maintained the proliferation ability of basal epithelial cells. Quercetin pretreatment alleviated reactive oxygen species generation, NF-κB pathway activation, and downstream proinflammatory cytokine production and reduced DNA double-strand breaks and cellular senescence induced by ionizing radiation. Quercetin also upregulated BMI-1 expression in oral epithelial cells and promoted ulcer repair. In addition, quercetin exerted similar radioprotective effects in irradiated primary cultured normal human keratinocytes, reduced reactive oxygen species generation and proinflammatory cytokine release, and promoted DNA double-strand break repair and wound healing by upregulating the expression of BMI-1, which is a polycomb group protein. Thus, quercetin can block multiple pathological processes of radiation-induced oral mucositis by targeting BMI-1 and may be a potential treatment option for preventing radiation-induced oral mucositis.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Yali Zhang ◽  
Yu Fu ◽  
Chenyang Zhang ◽  
Linying Jia ◽  
Nuo Yao ◽  
...  

Mediator complex subunit 1 (MED1) is a component of the mediator complex and functions as a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Previously, we showed that MED1 in macrophages has a protective effect on atherosclerosis; however, the effect of MED1 on intimal hyperplasia and mechanisms regulating proinflammatory cytokine production after macrophage MED1 deletion are still unknown. In this study, we report that MED1 macrophage-specific knockout (MED1ΔMac) mice showed aggravated neointimal hyperplasia, vascular smooth muscle cells (VSMCs), and macrophage accumulation in injured arteries. Moreover, MED1ΔMac mice showed increased proinflammatory cytokine production after an injury to the artery. After lipopolysaccharide (LPS) treatment, MED1ΔMac macrophages showed increased generation of reactive oxygen species (ROS) and reduced expression of peroxisome proliferative activated receptor gamma coactivator-1α (PGC1α) and antioxidant enzymes, including catalase and glutathione reductase. The overexpression of PGC1α attenuated the effects of MED1 deficiency in macrophages. In vitro, conditioned media from MED1ΔMac macrophages induced more proliferation and migration of VSMCs. To explore the potential mechanisms by which MED1 affects inflammation, macrophages were treated with BAY11-7082 before LPS treatment, and the results showed that MED1ΔMac macrophages exhibited increased expression of phosphorylated-p65 and phosphorylated signal transducer and activator of transcription 1 (p-STAT1) compared with the control macrophages, suggesting the enhanced activation of NF-κB and STAT1. In summary, these data showed that MED1 deficiency enhanced inflammation and the proliferation and migration of VSMCs in injured vascular tissue, which may result from the activation of NF-κB and STAT1 due to the accumulation of ROS.


2021 ◽  
Vol 9 (F) ◽  
pp. 620-628
Author(s):  
Gontar Alamsyah Siregar ◽  
Asri Ludin Tambunan

Backgrounds: Coronavirus brought about by SARS-CoV-2 is a continuous worldwide pandemic. SARS-CoV-2 influences the human respiratory tracts’ epithelial cells, prompting a proinflammatory cytokine storm and ongoing lung inflammation. With various patients kicking the bucket day by day, an immunization and explicit antiviral medication regimens are being investigated. The choice to utilize this medication during the COVID-19 pandemic should be founded on cautious thought of the likely as preventive and curative in such context. Methods: A literature review changed into carried out through the PubMed, Science Direct, Medline, and Google Scholar search engines consist of probiotics preventive and management possibility in COVID-19. Results: The probiotics significantly affects the host insusceptible reaction, foundationally, and on invulnerable responses at close by mucosal locales, like the lung. Certain strains of probiotics have improved interferon type I levels, hoisting the number and capacity of antigen-introducing cells, regular executioner cells, and T cells, just as expanding the degree of specific antibodies at the fundamental and mucosal destinations. Conclusion: Probiotics have various advantages and potential in preventing and as the treatment of COVID-19, adjusting the arrangement of human gut microflora, reinforcing gut obstruction work, and defensive invulnerable reactions.


Sign in / Sign up

Export Citation Format

Share Document