scholarly journals Pharmacokinetic-Pharmacodynamic Modeling of Propofol in Children

2010 ◽  
Vol 113 (2) ◽  
pp. 343-352 ◽  
Author(s):  
Agnes Rigouzzo ◽  
Frederique Servin ◽  
Isabelle Constant

Background The aim of this study was to identify the best model to describe pharmacokinetics and pharmacodynamics in prepubertal children and therefore to calculate the corresponding pharmacodynamic parameters. In addition, and to confirm our method, a group of postpubertal subjects was also studied. Methods Sixteen children (9.5 yr, range 6-12) and 13 adults (22 yr, range 13-35) were included. Induction was performed by plasma target-controlled infusion of propofol (6 microg/ml) based on the Kataria model in children and on the Schnider model in adults. The relationship of bispectral index to predicted concentrations was studied during induction using the Kataria, pediatric Marsh, Schüttler, and Schnider models in children. Because the best performance was obtained, strangely enough, with the Schnider model, the two groups were pooled to investigate influence of puberty on pharmacodynamic parameters (kE0 [plasma effect-site equilibration rate constant] and Ce50 [effect-site concentration corresponding with 50% of the maximal effect]). The time-to-peak effect was calculated, and the kE0 was determined for the Kataria model (nonlinear mixed-effects modeling; pkpdtools). Results In children, the predicted concentration/effect relationship was best described using the Schnider model. When the whole population was considered, a significant improvement in this model was obtained using puberty as a covariate for kE0 and Ce50. The time to peak effect, Tpeak (median, 0.71 [range, 0.37-1.64] and 1.73 [1.4-2.68] min), and the Ce50 (3.71 [1.88-4.4] and 3.07 [2.95-5.21] microg/ml) were shorter and higher, respectively, in children than in adults. The kE0 linked to the Kataria model was 4.6 [1.4-11] min. Conclusions In children, the predicted concentration/effect relationships were best described using the Schnider model described for adults compared with classic pediatric models. The study suggests that the Schnider model might be useful for propofol target-control infusion in children.

2004 ◽  
Vol 101 (5) ◽  
pp. 1112-1121 ◽  
Author(s):  
Anthony G. Doufas ◽  
Maryam Bakhshandeh ◽  
Andrew R. Bjorksten ◽  
Steven L. Shafer ◽  
Daniel I. Sessler

Background Evidence suggests that the rate at which intravenous anesthetics are infused may influence their plasma-effect site equilibration. The authors used five different rates of propofol administration to test the hypothesis that different sedation endpoints occur at the same effect site propofol concentration, independent of the infusion rate. The authors concurrently evaluated the automated responsiveness monitor (ARM) against other sedation measures and the propofol effect site concentration. Methods With Human Studies Committee approval, 18 healthy volunteers received five consecutive target-controlled propofol infusions. During each infusion, the effect site concentration was increased by a rate of 0.1, 0.3, 0.5, 0.7, or 0.9 microg . ml . min. The Bispectral Index and ARM were recorded at frequent intervals. The times of syringe drop and loss and recovery of responsiveness were noted. Pharmacokinetic and pharmacodynamic modeling was performed using NONMEM. Results When the correct rate of plasma-effect site equilibration was determined for each individual (plasma-effect site equilibration = 0.17 min, time to peak effect = 2.7 min), the effect site concentrations associated with each clinical measure were not affected by the rate of increase of effect site propofol concentration. ARM correlated with all clinical measures of drug effect. Subjects invariably stopped responding to ARM at lower effect site propofol concentrations than those associated with loss of responsiveness. Conclusions : Population-based pharmacokinetics, combined with real-time electroencephalographic measures of drug effect, may provide a means to individualize pharmacodynamic modeling during target-controlled drug delivery. ARM seems useful as an automated measure of sedation and may provide the basis for automated monitoring and titration of sedation for a propofol delivery system.


2000 ◽  
Vol 92 (2) ◽  
pp. 399-399 ◽  
Author(s):  
Michel M. R. F. Struys ◽  
Tom De Smet ◽  
Birgit Depoorter ◽  
Linda F. M. Versichelen ◽  
Eric P. Mortier ◽  
...  

Background Target-controlled infusion (TCI) systems can control the concentration in the plasma or at the site of drug effect. A TCI system that targets the effect site should be able to accurately predict the time course of drug effect. The authors tested this by comparing the performance of three control algorithms: plasmacontrol TCI versus two algorithms for effect-site control TCI. Methods One-hundred twenty healthy women patients received propofol via TCI for 12-min at a target concentration of 5.4 microg/ml. In all three groups, the plasma concentrations were computed using pharmacokinetics previously reported. In group I, the TCI device controlled the plasma concentration. In groups II and III, the TCI device controlled the effect-site concentration. In group II, the effect site was computed using a half-life for plasma effect-site equilibration (t1/2k(eo)) of 3.5 min. In group III, plasma effect-site equilibration rate constant (k(eo)) was computed to yield a time to peak effect of 1.6 min after bolus injection, yielding a t1/2keo of 34 s. the time course of propofol was measured using the bispectral index. Blood pressure, ventilation, and time of loss of consciousness were measured. Results The time course of propofol drug effect, as measured by the bispectral index, was best predicted in group III. Targeting the effect-site concentration shortened the time to loss of consciousness compared with the targeting plasma concentration without causing hypotension. The incidence of apnea was less in group III than in group II. Conclusion Effect compartment-controlled TCI can be safely applied in clinical practice. A biophase model combining the Marsh kinetics and a time to peak effect of 1.6 min accurately predicted the time course of propofol drug effect.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Young-Eun Jang ◽  
Sang-Hwan Ji ◽  
Ji-Hyun Lee ◽  
Eun-Hee Kim ◽  
Jin-Tae Kim ◽  
...  

Abstract Background Continuous infusion of propofol has been used to achieve sedation in children. However, the relationship between the effect-site concentration (Ce) of propofol and sedation scale has not been previously examined. The objective of this study was to investigate the relationship between the Ce of propofol and the University of Michigan Sedation Scale (UMSS) score in children with population pharmacodynamic modeling. Methods A total of 30 patients (aged 3 to 6 years) who underwent surgery under general anesthesia with propofol and remifentanil lasting more than 1 h were enrolled in this study. Sedation levels were evaluated using the UMSS score every 20 s by a 1 μg/mL stepwise increase in the Ce of propofol during the induction of anesthesia. The pharmacodynamic relationship between the Ce of propofol and UMSS score was analyzed by logistic regression with nonlinear mixed-effect modeling. Results The estimated Ce50 (95% confidence interval) of propofol to yield UMSS scores equal to or greater than n were 1.84 (1.54–2.14), 2.64 (2.20–3.08), 3.98 (3.66–4.30), and 4.78 (4.53–5.03) μg/mL for n = 1, 2, 3, and 4, respectively. The slope steepness for the relationship of the Ce versus sedative response to propofol (95% confidence interval) was 5.76 (4.00–7.52). Conclusions We quantified the pharmacodynamic relationship between the Ce of propofol and UMSS score, and this finding may be helpful to predict the sedation score at the target Ce of propofol in children. Trial registration http://www.clinicaltrials.gov (No.: NCT03195686, Date of registration: 22/06/2017).


2004 ◽  
Vol 101 (6) ◽  
pp. 1269-1274 ◽  
Author(s):  
Hernán R. Muñoz ◽  
Luis I. Cortínez ◽  
Mauricio E. Ibacache ◽  
Fernando R. Altermatt

Background Targeting the effect site concentration may offer advantages over the traditional forms of administrating intravenous anesthetics. Because the lack of the plasma effect site equilibration rate constant (ke0) for propofol in children precludes the use of this technique in this population, the authors estimated the value of ke0 for propofol in children using the time to peak effect (tpeak) method and two pharmacokinetic models of propofol for children. Methods : The tpeak after a submaximal bolus dose of propofol was measured by means of the Alaris A-Line auditory evoked potential monitor (Danmeter A/S, Odense, Denmark) in 25 children (aged 3-11 yr) and 25 adults (aged 35-48 yr). Using tpeak and two previously validated sets of pharmacokinetic parameters for propofol in children, Kataria's and that used in the Paedfusor (Graseby Medical Ltd., Hertfordshire, United Kingdom), the ke0 was estimated according to a method recently published. Results The mean tpeak was 80 +/- 20 s in adults and 132 +/- 49 s in children (P < 0.001). The median ke0 in children was 0.41 min(-1) with the model of Kataria and 0.91 min(-1) with the Paedfusor model (P < 0.01). The corresponding t1/2 ke0 values, in minutes, were 1.7 and 0.8, respectively (P < 0.01). Conclusions : Children have a significantly longer tpeak of propofol than adults. The values of ke0 of propofol calculated for children depend on the pharmacokinetic model used and also can only be used with the appropriate set of pharmacokinetic parameters to target effect site in this population.


1999 ◽  
Vol 90 (6) ◽  
pp. 1502-1516. ◽  
Author(s):  
Thomas W. Schnider ◽  
Charles F. Minto ◽  
Steven L. Shafer ◽  
Pedro L. Gambus ◽  
Corina Andresen ◽  
...  

Background The authors studied the influence of age on the pharmacodynamics of propofol, including characterization of the relation between plasma concentration and the time course of drug effect. Methods The authors evaluated healthy volunteers aged 25-81 yr. A bolus dose (2 mg/kg or 1 mg/kg in persons older than 65 yr) and an infusion (25, 50, 100, or 200 microg x kg(-1) x min(-1)) of the older or the new (containing EDTA) formulation of propofol were given on each of two different study days. The propofol concentration was determined in frequent arterial samples. The electroencephalogram (EEG) was used to measure drug effect. A statistical technique called semilinear canonical correlation was used to select components of the EEG power spectrum that correlated optimally with the effect-site concentration. The effect-site concentration was related to drug effect with a biphasic pharmacodynamic model. The plasma effect-site equilibration rate constant was estimated parametrically. Estimates of this rate constant were validated by comparing the predicted time of peak effect with the time of peak EEG effect. The probability of being asleep, as a function of age, was determined from steady state concentrations after 60 min of propofol infusion. Results Twenty-four volunteers completed the study. Three parameters of the biphasic pharmacodynamic model were correlated linearly with age. The plasma effect-site equilibration rate constant was 0.456 min(-1). The predicted time to peak effect after bolus injection ranging was 1.7 min. The time to peak effect assessed visually was 1.6 min (range, 1-2.4 min). The steady state observations showed increasing sensitivity to propofol in elderly patients, with C50 values for loss of consciousness of 2.35, 1.8, and 1.25 microg/ml in volunteers who were 25, 50, and 75 yr old, respectively. Conclusions Semilinear canonical correlation defined a new measure of propofol effect on the EEG, the canonical univariate parameter for propofol. Using this parameter, propofol plasma effect-site equilibration is faster than previously reported. This fast onset was confirmed by inspection of the EEG data. Elderly patients are more sensitive to the hypnotic and EEG effects of propofol than are younger persons.


2019 ◽  
Vol 71 (8) ◽  
pp. 1817-1823 ◽  
Author(s):  
Elin M Svensson ◽  
Sofiati Dian ◽  
Lindsey Te Brake ◽  
Ahmad Rizal Ganiem ◽  
Vycke Yunivita ◽  
...  

Abstract Background Intensified antimicrobial treatment with higher rifampicin doses may improve outcome of tuberculous meningitis, but the desirable exposure and necessary dose are unknown. Our objective was to characterize the relationship between rifampicin exposures and mortality in order to identify optimal dosing for tuberculous meningitis. Methods An individual patient meta-analysis was performed on data from 3 Indonesian randomized controlled phase 2 trials comparing oral rifampicin 450 mg (~10 mg/kg) to intensified regimens including 750–1350 mg orally, or a 600-mg intravenous infusion. Pharmacokinetic data from plasma and cerebrospinal fluid (CSF) were analyzed with nonlinear mixed-effects modeling. Six-month survival was described with parametric time-to-event models. Results Pharmacokinetic analyses included 133 individuals (1150 concentration measurements, 170 from CSF). The final model featured 2 disposition compartments, saturable clearance, and autoinduction. Rifampicin CSF concentrations were described by a partition coefficient (5.5%; 95% confidence interval [CI], 4.5%–6.4%) and half-life for distribution plasma to CSF (2.1 hours; 95% CI, 1.3–2.9 hours). Higher CSF protein concentration increased the partition coefficient. Survival of 148 individuals (58 died, 15 dropouts) was well described by an exponentially declining hazard, with lower age, higher baseline Glasgow Coma Scale score, and higher individual rifampicin plasma exposure reducing the hazard. Simulations predicted an increase in 6-month survival from approximately 50% to approximately 70% upon increasing the oral rifampicin dose from 10 to 30 mg/kg, and predicted that even higher doses would further improve survival. Conclusions Higher rifampicin exposure substantially decreased the risk of death, and the maximal effect was not reached within the studied range. We suggest a rifampicin dose of at least 30 mg/kg to be investigated in phase 3 clinical trials.


2009 ◽  
Vol 53 (7) ◽  
pp. 883-890 ◽  
Author(s):  
H. R. MUÑOZ ◽  
P. J. LEÓN ◽  
R. S. FUENTES ◽  
G. C. ECHEVARRÍA ◽  
L. I. CORTÍNEZ

2020 ◽  
Vol 23 (1) ◽  
Author(s):  
Johannes H. Proost ◽  
Douglas J. Eleveld ◽  
Michel M. R. F. Struys

AbstractThe relationship between the concentration of a drug and its pharmacological effect is often described by empirical mathematical models. We investigated the relationship between the steepness of the concentration–effect relationship and inter-individual variability (IIV) of the parameters of the sigmoid Emax model, using the similarity between the sigmoid Emax model and the cumulative log-normal distribution. In addition, it is investigated whether IIV in the model parameters can be estimated accurately by population modeling. Multiple data sets, consisting of 40 individuals with 4 binary observations in each individual, were simulated with varying values for the model parameters and their IIV. The data sets were analyzed using Excel Solver and NONMEM. An empirical equation (Eq. (11)) was derived describing the steepness of the population-predicted concentration–effect profile (γ*) as a function of γ and IIV in C50 and γ, and was validated for both binary and continuous data. The tested study design is not suited to estimate the IIV in C50 and γ with reasonable precision. Using a naive pooling procedure, the population estimates γ* are significantly lower than the value of γ used for simulation. The steepness of the population-predicted concentration–effect relationship (γ*) is less than that of the individuals (γ). Using γ*, the population-predicted drug effect represents the drug effect, for binary data the probability of drug effect, at a given concentration for an arbitrary individual.


Sign in / Sign up

Export Citation Format

Share Document