A Therapeutic Efficacy of the Transpedicular Intracorporeal Bone Graft With Short-Segmental Posterior Instrumentation in Osteonecrosis of Vertebral Body

Spine ◽  
2013 ◽  
Vol 38 (4) ◽  
pp. E244-E250 ◽  
Author(s):  
Gun Woo Lee ◽  
Jin S. Yeom ◽  
Ho-Joong Kim ◽  
Bo-Gun Suh
2021 ◽  
Vol 74 (5-6) ◽  
pp. 211-215
Author(s):  
Balázs Berta ◽  
Hedvig Komáromy ◽  
Attila Schwarcz ◽  
Béla Kajtár ◽  
András Büki ◽  
...  

A case of a 61-year-old male patient suffered chronic renal failure and dialysed for 23 years with destructive cervical spondylarthropathy is presented. The patient presented with sudden onset of cervical pain radiating into his shoulders without neurological deficits. CT and MRI of the cervical and thoracic spine revealed severe destructive changes and compressive fractures of C6 and C7 vertebrae which caused the narrowing of the nerve root canals at these levels. A 360-degree fixation was performed to treat the unstable fracture and the patient’s pain (C6 and C7 corpectomy, autolog bone graft replacement of the two vertebral bodies, anterior plate fixation and posterior instrumentation with screws and rods). Postoperatively the patient had no significant pain, no neurological deficit and he was able to manage independent life himself. During the immediate follow-up CT of the neck showed the satisfactory position of the bone graft and the metal implantations. The 6 months follow-up CT revealed the anterior migration of the two screws from the Th1 vertebral body and 2 mm ventral elevation of the caudal end of the plate from the anterior surface of the Th1 vertebral body. The 1-year follow-up could not be performed because the patient died due to cardio-pulmonary insufficiency. This is the second Hungarian report of a chronic dialysis related severe spondylarthropathy which may cause pathologic fractures of the vertebral bodies. The typical radiological and histological findings are discussed. This disease affect patients’ quality of life and the conservative treatment alone seems to be ineffective in most cases. Based on the literature and personal experiences, the authors suggest 360-degree fixation of the spine to provide sufficient stability for the vertebrae of ”bad bone quality”, and early mobilisation of the patient can be achieved.


2021 ◽  
Vol 11 (9) ◽  
pp. 1491-1496
Author(s):  
Xiaojiang Li ◽  
Xudong Zhang ◽  
Shanshan Dong ◽  
Haijun Li ◽  
Chunlan Wang ◽  
...  

This study aimed to explore the safety and efficacy of using nano-hydroxyapatite/polyamide (N-HA/PA) composite in anterior cervical vertebral body subtotal corpectomy and interbody fusion. Total 50 patients with cervical spondylotic myelopathy were enrolled to undergo anterior cervical spondylectomy. Bone graft pedicles were compounded with N-HA/PA and intervertebral body fusion was performed. Study outcomes included surgical efficacy and the degree of fusion. Patients in whom vertebral body fusion was performed with N-HA/PA composite pedicles had significantly improved symptoms. The postoperative Japanese Orthopaedic Association scores increased to 18.56±4.37 from 11.37±3.52, reflecting an improvement rate of 87.3%. The composite pedicle fusion rate was 96.4%. Therefore, N-HA/PA composite pedicle as a bone graft material in fusion surgery provides significant therapeutic efficacy. Moreover, the composite pedicle fusion rate is high, making it ideal for anterior cervical vertebral body subtotal corpectomy and fusion.


2010 ◽  
Vol 24-25 ◽  
pp. 287-295 ◽  
Author(s):  
Juan Alfonso Beltrán-Fernández ◽  
Luis Héctor Hernández-Gómez ◽  
G. Urriolagoitia-Calderón ◽  
A. González-Rebatú ◽  
G. Urriolagoitia-Sosa

In this paper the biomechanical behavior and numerical evaluation results of three C3-C5 porcine cervical models created with different modeling techniques are shown. The objective of this evaluation is to know the differences between the biomechanical effects on a bone graft, which replaces a damaged C4 vertebral body, a titanium alloy (Ti-6A1-4V) cervical plate, used to isolate the C4 damaged vertebra, and the influence on the compressive loads on the complete and instrumented C3-C5 cervical model. The biomechanical integrity of the healthy C3 and C5 vertebral body after the fixation of the cervical plate using titanium alloy screws is considered. Besides, 2-D Computer Tomography classic technique, 3-D Scanner Z-Corp 700 and a CT scanning Philips Brilliance system was used to create the three FEM models. In addition, 3-D Software as Pro-E Wildfire 4.0, ScanIP 3.1, UGS NX-4 and Geomagics R 10.0 was used to create specific numerical model. Main displacements and von Misses stresses between the upper and lower surfaces of the vertebral bodies and the bone graft and the influence of the titanium alloy (Ti-6A1-4V) screws on the vertebral body of C3 and C5 were evaluated. The contribution of this study is to optimize the actual surgical technique once the numerical results on the FEM model have been analyzed. In other words, the numerical disparity between classic CT techniques versus 3-D modern techniques is established.


2014 ◽  
Vol 21 (3) ◽  
pp. 481-488 ◽  
Author(s):  
Tiffany G. Perry ◽  
Prasath Mageswaran ◽  
Robb W. Colbrunn ◽  
Tara F. Bonner ◽  
Todd Francis ◽  
...  

Object Classic biomechanical models have used thoracic spines disarticulated from the rib cage, but the biomechanical influence of the rib cage on fracture biomechanics has not been investigated. The well-accepted construct for stabilizing midthoracic fractures is posterior instrumentation 3 levels above and 2 levels below the injury. Short-segment fixation failure in thoracolumbar burst fractures has led to kyphosis and implant failure when anterior column support is lacking. Whether shorter constructs are viable in the midthoracic spine is a point of controversy. The objective of this study was the biomechanical evaluation of a burst fracture at T-9 with an intact rib cage using different fixation constructs for stabilizing the spine. Methods A total of 8 human cadaveric spines (C7–L1) with intact rib cages were used in this study. The range of motion (ROM) between T-8 and T-10 was the outcome measure. A robotic spine testing system was programmed to apply pure moment loads (± 5 Nm) in lateral bending, flexion-extension, and axial rotation to whole thoracic specimens. Intersegmental rotations were measured using an optoelectronic system. Flexibility tests were conducted on intact specimens, then sequentially after surgically induced fracture at T-9, and after each of 4 fixation construct patterns. The 4 construct patterns were sequentially tested in a nondestructive protocol, as follows: 1) 3 above/2 below (3A/2B); 2) 1 above/1 below (1A/1B); 3) 1 above/1 below with vertebral body augmentation (1A/1B w/VA); and 4) vertebral body augmentation with no posterior instrumentation (VA). A repeated-measures ANOVA was used to compare the segmental motion between T-8 and T-10 vertebrae. Results Mean ROM increased by 86%, 151%, and 31% after fracture in lateral bending, flexion-extension, and axial rotation, respectively. In lateral bending, there was significant reduction compared with intact controls for all 3 instrumented constructs: 3A/2B (−92%, p = 0.0004), 1A/1B (−63%, p = 0.0132), and 1A/1B w/VA (−66%, p = 0.0150). In flexion-extension, only the 3A/2B pattern showed a significant reduction (−90%, p = 0.011). In axial rotation, motion was significantly reduced for the 3 instrumented constructs: 3A/2B (−66%, p = 0.0001), 1A/1B (−53%, p = 0.0001), and 1A/1B w/VA (−51%, p = 0.0002). Between the 4 construct patterns, the 3 instrumented constructs (3A/2B, 1A/1B, and 1A/1B w/VA) showed comparable stability in all 3 motion planes. Conclusions This study showed no significant difference in the stability of the 3 instrumented constructs tested when the rib cage is intact. Fractures that might appear more grossly unstable when tested in the disarticulated spine may be bolstered by the ribs. This may affect the extent of segmental spinal instrumentation needed to restore stability in some spine injuries. While these initial findings suggest that shorter constructs may adequately stabilize the spine in this fracture model, further study is needed before these results can be extrapolated to clinical application.


Sign in / Sign up

Export Citation Format

Share Document