neurological deficits
Recently Published Documents


TOTAL DOCUMENTS

3986
(FIVE YEARS 1522)

H-INDEX

113
(FIVE YEARS 9)

Medicina ◽  
2022 ◽  
Vol 58 (1) ◽  
pp. 133
Author(s):  
Domenico M. Romeo ◽  
Martina Ricci ◽  
Federica Mirra ◽  
Ilaria Venezia ◽  
Maria Mallardi ◽  
...  

Background and Objectives: Preterm infants are at higher risk of neurodevelopmental impairment both at preschool and school ages, even in the absence of major neurological deficits. The early identification of children at risk is essential for early intervention with rehabilitation to optimize potential outcomes during school years. The aim of our study is to assess cognitive outcomes at preschool age in a cohort of low-risk very preterm infants, previously studied at 12 and 24 months using the Griffiths scales. Materials and Methods: Sixty-six low-risk very preterm infants born at a gestational age of <32 weeks were assessed at 12 and 24 months corrected age using the Griffiths Mental Development Scales (second edition) and at preschool age with the Wechsler Preschool and Primary Scales of Intelligence (third edition) (WPPSI-III). Results: At 12 and 24 months and at preschool age, low-risk very preterm infants showed scores within normal ranges with similar scores in males and females. A statistically significant correlation was observed in the general developmental quotient between 12 and 24 months; a further significant correlation was observed between the early cognitive assessments and those performed at preschool age, with a better correlation using the assessments at 24 months. Conclusion: The present study showed a favourable trajectory of cognitive development in low-risk very preterm infants, from 12 months to preschool age.


Medicina ◽  
2022 ◽  
Vol 58 (1) ◽  
pp. 127
Author(s):  
Francesca Gabriela Paslaru ◽  
Anca Maria Panaitescu ◽  
Elena Nestian ◽  
George Iancu ◽  
Alina Veduta ◽  
...  

Headache is a common complaint during pregnancy and the puerperium. The differentiation between a benign headache and a headache that has an underlying more endangering cause, such as an intracranial tumor, can be difficult and often requires diagnostic procedures and brain imaging techniques. We report the case of an 18-year-old female patient who developed clinical symptoms—persistent headache followed by neurological deficit—in the last part of her pregnancy. A medulloblastoma (MB) was diagnosed and treated after delivery. We review 11 other cases of MB in pregnancy reported in the literature. The most common clinical manifestation at diagnosis was headache followed by neurological deficits. We discuss the association of brain tumor growth with physiological changes during pregnancy. We conclude that clinical features of intracranial tumors can be misinterpreted as pregnancy-related symptoms and should not be dismissed.


2022 ◽  
Vol 12 ◽  
Author(s):  
Meizhu Zheng ◽  
Mi Zhou ◽  
Minghui Chen ◽  
Yao Lu ◽  
Dongfang Shi ◽  
...  

Daidzein is a plant isoflavonoid primarily isolated from Pueraria lobate Radix as the dry root of P. lobata (Wild.) Ohwi, have long been used as nutraceutical and medicinal herb in China. Despite the report that daidzein can prevent neuronal damage and improve outcome in experimental stroke, the mechanisms of this neuroprotective action have been not fully elucidated. The aim of this study was to determine whether the daidzein elicits beneficial actions in a stroke model, namely, cerebral ischemia/reperfusion (I/R) injury, and to reveal the underlying neuroprotective mechanisms associated with the regulation of Akt/mTOR/BDNF signal pathway. The results showed that I/R, daidzein treatment significantly improved neurological deficits, infarct volume, and brain edema at 20 and 30 mg/kg, respectively. Meanwhile, it was found out that the pretreatment with daidzein at 20 and 30 mg/kg evidently improved striatal dopamine and its metabolite levels. In addition, daidzein treatment reduced the cleaved Caspase-3 level but enhanced the phosphorylation of Akt, BAD and mTOR. Moreover, daidzein at 30 mg/kg treatment enhanced the expression of BDNF and CREB significantly. This protective effect of daidzein was ameliorated by inhibiting the PI3K/Akt/mTOR signaling pathway using LY294002. To sum up, our results demonstrated that daidzein could protect animals against ischemic damage through the regulation of the Akt/mTOR/BDNF channel, and the present study may facilitate the therapeutic research of stroke.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 242
Author(s):  
Chieh-Hsin Wu ◽  
Hung-Pei Tsai ◽  
Yu-Feng Su ◽  
Cheng-Yu Tsai ◽  
Ying-Yi Lu ◽  
...  

A subarachnoid hemorrhage (SAH), leading to severe disability and high fatality in survivors, is a devastating disease. Neuro-inflammation, a critical mechanism of cerebral vasospasm and brain injury from SAH, is tightly related to prognoses. Interestingly, studies indicate that 2-[(pyridine-2-ylmethyl)-amino]-phenol (2-PMAP) crosses the blood–brain barrier easily. Here, we investigated whether the vasodilatory and neuroprotective roles of 2-PMAP were observed in SAH rats. Rats were assigned to three groups: sham, SAH and SAH+2-PMAP. SAHs were induced by a cisterna magna injection. In the SAH+2-PMAP group, 5 mg/kg 2-PMAP was injected into the subarachnoid space before SAH induction. The administration of 2-PMAP markedly ameliorated cerebral vasospasm and decreased endothelial apoptosis 48 h after SAH. Meanwhile, 2-PMAP decreased the severity of neurological impairments and neuronal apoptosis after SAH. Furthermore, 2-PMAP decreased the activation of microglia and astrocytes, expressions of TLR-4 and p-NF-κB, inflammatory markers (TNF-α, IL-1β and IL-6) and reactive oxygen species. This study is the first to confirm that 2-PMAP has vasodilatory and neuroprotective effects in a rat model of SAH. Taken together, the experimental results indicate that 2-PMAP treatment attenuates neuro-inflammation, oxidative stress and cerebral vasospasm, in addition to ameliorating neurological deficits, and that these attenuating and ameliorating effects are conferred through the TLR-4/NF-κB pathway.


2022 ◽  
Author(s):  
Peramaiyan Rajendran ◽  
Rebai Ben Ammar ◽  
Fatma J Al-Saeedi ◽  
Saeed Y. AlRamadan ◽  
Mohammad Bani Ismail ◽  
...  

Abstract D-galactose (D-gal) is a reducing sugar drug can induce artificial senescence and aging process that mimic natural aging along with the accompanying brain and liver injury in experimental animals. Therefore, chronic D-gal administration is widely used to induce cognitive impairment, Alzheimer disease and aging in rodents' models. Aging is a phenomenon in which oxidative stress and apoptosis play a vital role. Geraniol (GNL) belongs to the acyclic isoprenoid monoterpenes, presents in essential oils such as those from Cinnamomum tenuipilum and Valeriana officinalis. In the present study, we examined the effects of GNL on D-gal-induced oxidative stress and neuro-inflammation mediated memory loss in mice. Analyzing the behavioral differences between control and treated groups, including the elderly mice, revealed that GNL significantly improved memory in mice treated with D-gal-induced memory loss (supplementary videos are provided). The anti-inflammatory and the anti-oxidative role of GNL were confirmed by both histopathological investigations and biochemical analyses. Mechanistically, GNL appears to activate PI3K/Akt and thus upregulates the nuclear factor erythroid 2-related factor 2 (Nrf2) and the heme oxygenase 1 (HO-1) to reduce the oxidative stress and apoptosis induced after D-gal treatment leading to easing of neurological deficits and cognitive dysfunction in D-gal-induced aging mouse models. Accordingly, our comprehensive behavioral analysis and bioassays suggest GNL as a promising agent preventing cognitive impairment and neurological deficits associated with aging.


2022 ◽  
Vol 12 ◽  
Author(s):  
Ayan Mohamud Yusuf ◽  
Nina Hagemann ◽  
Peter Ludewig ◽  
Matthias Gunzer ◽  
Dirk M. Hermann

Following ischemic stroke, polymorphonuclear neutrophils (PMNs) are rapidly recruited to the ischemic brain tissue and exacerbate stroke injury by release of reactive oxygen species (ROS), proteases and proinflammatory cytokines. PMNs may aggravate post-ischemic microvascular injury by obstruction of brain capillaries, contributing to reperfusion deficits in the stroke recovery phase. Thus, experimental studies which specifically depleted PMNs by delivery of anti-Ly6G antibodies or inhibited PMN brain entry, e.g., by CXC chemokine receptor 2 (CXCR2) or very late antigen-4 (VLA-4) blockade in the acute stroke phase consistently reduced neurological deficits and infarct volume. Although elevated PMN responses in peripheral blood are similarly predictive for large infarcts and poor stroke outcome in human stroke patients, randomized controlled clinical studies targeting PMN brain infiltration did not improve stroke outcome or even worsened outcome due to serious complications. More recent studies showed that PMNs have decisive roles in post-ischemic angiogenesis and brain remodeling, most likely by promoting extracellular matrix degradation, thereby amplifying recovery processes in the ischemic brain. In this minireview, recent findings regarding the roles of PMNs in ischemic brain injury and post-ischemic brain remodeling are summarized.


Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 340
Author(s):  
Matthew Muir ◽  
Sarah Prinsloo ◽  
Hayley Michener ◽  
Jeffrey I. Traylor ◽  
Rajan Patel ◽  
...  

Surgeons must optimize the onco-functional balance by maximizing the extent of resection and minimizing postoperative neurological morbidity. Optimal patient selection and surgical planning requires preoperative identification of nonresectable structures. Transcranial magnetic stimulation is a method of noninvasively mapping the cortical representations of the speech and motor systems. Despite recent promising data, its clinical relevance and appropriate role in a comprehensive mapping approach remains unknown. In this study, we aim to provide direct evidence regarding the clinical utility of transcranial magnetic stimulation by interrogating the eloquence of TMS points. Forty-two glioma patients were included in this retrospective study. We collected motor function outcomes 3 months postoperatively. We overlayed the postoperative MRI onto the preoperative MRI to visualize preoperative TMS points in the context of the surgical cavity. We then generated diffusion tensor imaging tractography to identify meaningful subsets of TMS points. We correlated the resection of preoperative imaging features with clinical outcomes. The resection of TMS-positive points was significantly predictive of permanent deficits (p = 0.05). However, four out of eight patients had TMS-positive points resected without a permanent deficit. DTI tractography at a 75% FA threshold identified which TMS points are essential and which are amenable to surgical resection. TMS combined with DTI tractography shows a significant prediction of postoperative neurological deficits with both a high positive predictive value and negative predictive value.


Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 341
Author(s):  
Felix Ehret ◽  
Markus Kufeld ◽  
Christoph Fürweger ◽  
Alfred Haidenberger ◽  
Susanne Fichte ◽  
...  

Background: Foramen magnum meningiomas (FMMs) represent a considerable neurosurgical challenge given their location and potential morbidity. Stereotactic radiosurgery (SRS) is an established non-invasive treatment modality for various benign and malignant brain tumors. However, reports on single-session or multisession SRS for the management and treatment of FMMs are exceedingly rare. We report the largest FMM SRS series to date and describe our multicenter treatment experience utilizing robotic radiosurgery. Methods: Patients who underwent SRS between 2005 and 2020 as a treatment for a FMM at six different centers were eligible for analysis. Results: Sixty-two patients met the inclusion criteria. The median follow-up was 28.9 months. The median prescription dose and isodose line were 14 Gy and 70%, respectively. Single-session SRS accounted for 81% of treatments. The remaining patients received three to five fractions, with doses ranging from 19.5 to 25 Gy. Ten (16%) patients were treated for a tumor recurrence after surgery, and thirteen (21%) underwent adjuvant treatment. The remaining 39 FMMs (63%) received SRS as their primary treatment. For patients with an upfront surgical resection, histopathological examination revealed 22 World Health Organization grade I tumors and one grade II FMM. The median tumor volume was 2.6 cubic centimeters. No local failures were observed throughout the available follow-up, including patients with a follow-up ≥ five years (16 patients), leading to an overall local control of 100%. Tumor volume significantly decreased after treatment, with a median volume reduction of 21% at the last available follow-up (p < 0.01). The one-, three-, and five-year progression-free survival were 100%, 96.6%, and 93.0%, respectively. Most patients showed stable (47%) or improved (21%) neurological deficits at the last follow-up. No high-grade adverse events were observed. Conclusions: SRS is an effective and safe treatment modality for FMMs. Despite the paucity of available data and previous reports, SRS should be considered for selected patients, especially those with subtotal tumor resections, recurrences, and patients not suitable for surgery.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Nicholas Valassina ◽  
Simone Brusco ◽  
Alessia Salamone ◽  
Linda Serra ◽  
Mirko Luoni ◽  
...  

AbstractDravet syndrome is a severe epileptic encephalopathy caused primarily by haploinsufficiency of the SCN1A gene. Repetitive seizures can lead to endurable and untreatable neurological deficits. Whether this severe pathology is reversible after symptom onset remains unknown. To address this question, we generated a Scn1a conditional knock-in mouse model (Scn1a Stop/+) in which Scn1a expression can be re-activated on-demand during the mouse lifetime. Scn1a gene disruption leads to the development of seizures, often associated with sudden unexpected death in epilepsy (SUDEP) and behavioral alterations including hyperactivity, social interaction deficits and cognitive impairment starting from the second/third week of age. However, we showed that Scn1a gene re-activation when symptoms were already manifested (P30) led to a complete rescue of both spontaneous and thermic inducible seizures, marked amelioration of behavioral abnormalities and normalization of hippocampal fast-spiking interneuron firing. We also identified dramatic gene expression alterations, including those associated with astrogliosis in Dravet syndrome mice, that, accordingly, were rescued by Scn1a gene expression normalization at P30. Interestingly, regaining of Nav1.1 physiological level rescued seizures also in adult Dravet syndrome mice (P90) after months of repetitive attacks. Overall, these findings represent a solid proof-of-concept highlighting that disease phenotype reversibility can be achieved when Scn1a gene activity is efficiently reconstituted in brain cells.


Sign in / Sign up

Export Citation Format

Share Document