scholarly journals Stress-induced DNA damage: a case study in diffuse large B-cell lymphoma

2014 ◽  
Vol 11 (100) ◽  
pp. 20140785 ◽  
Author(s):  
Luz Adriana Nicasio-Collazo ◽  
Alexandra Delgado-González ◽  
Ramón Castañeda-Priego ◽  
Enrique Hernández-Lemus

DNA damage is one of the mechanisms of mutagenesis. Sequence integrity may be affected by the action of thermal changes, chemical agents, both endogenous and exogenous, and other environmental issues. Abnormally high mutation rates are referred to as genomic instability : a phenomenon closely related to the onset of cancer. Mutant genotypes may be able to confer some kind of selective advantage on subclonal cell populations, leading them to multiply until dominance in a localized tissue environment that later becomes the tumour. Cellular stress, especially that of oxidative and ionic nature, is a recognized trigger for DNA-damaging processes. A physico-chemical model has shown that high hysteresis rates in DNA denaturation curves may be indicative of dissipative processes inducing DNA damage, thus potentially leading to uncontrolled mutagenesis and genome instability. We here study selectively to what extent this phenomenon may occur by analysing the sequence length and composition effects on the thermodynamic behaviour and the presence of hysteresis in pressure-driven DNA denaturation; pronounced hysteresis in the denaturation/renaturation curves may indicate thermal susceptibility to DNA damage. In particular, we consider highly mutated regions of the genome characterized in diffuse large B-cell lymphoma on a recent whole exome next-generation sequencing effort.

2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Yi Zhao ◽  
Juan Yang ◽  
Jiarui Liu ◽  
Yiqing Cai ◽  
Yang Han ◽  
...  

AbstractPolo-like kinase 4 (PLK4), a key regulator of centriole biogenesis, has recently been shown to play key roles in tumorigenesis. Blocking PLK4 expression by interference or targeted drugs exhibits attractive potential in improving the efficacy of chemotherapy. Nevertheless, the role of PLK4 in diffuse large B-cell lymphoma (DLBCL) is still undefined. In this study, we discover that PLK4 is a potential target for the treatment of DLBCL, and demonstrate the efficacy of a PLK4 inhibitor when used in combination with doxorubicin. Pharmaceutical inhibition of PLK4 with CFI-400945 inhibited DLBCL cell proliferation and induced apoptotic cell death. The anti-tumor effects were accompanied by mitotic defects, including polyploidy and cytokinesis failure. Activation of p53 and Hippo/YAP tumor suppressor signaling pathway was identified as the potential mechanisms driving CFI-400945 activity. Moreover, CFI-400945 treatment resulted in activation of DNA damage response. Combining CFI-400945 with doxorubicin markedly delayed tumor progression in DLBCL xenografts. Finally, PLK4 was increased in primary DLBCL tissues and cell lines. High levels of PLK4 expression were associated with poor survival in the patients receiving CHOP-based treatment, implicating PLK4 as a predictive biomarker of DLBCL chemosensitivity. These results provide the therapeutic potential of CFI-400945 both as monotherapy or in combination with doxorubicin for the treatment of DLBCL.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3073-3073
Author(s):  
Naoki Kaneko ◽  
Keisuke Mitsuoka ◽  
Nobuaki Amino ◽  
Kentaro Yamanaka ◽  
Aya Kita ◽  
...  

Abstract Background Diffuse large B-cell lymphoma (DLBCL) responds well to treatment with rituximab (RTX, an anti-CD20 antibody) based regimen, but a subset of patients still fail to achieve complete or durable responses and are not eligible for high-dose chemotherapy followed by autologous stem cell transplant. Therefore novel effective therapies with less toxicity for relapsed or refractory DLBCL patients are needed. Bendamustine (BEN) is a bifunctional alkylating agent for the treatment of multiple hematological tumors, including indolent and RTX-resistant NHL, and the combination of BEN with RTX showed clinical activity in patients with relapsed or refractory DLBCL in the Phase II study 1. Sepantronium bromide (YM155), a survivin suppressant, shows potent antitumor activities against a wide range of cancer cells, and NHL including DLBCL is one of the most sensitive tumor types to YM155. YM155 showed clinical activity when combined with RTX in patients with relapsed DLBCL 2. In the present study, we evaluated therapeutic potential of YM155, in combination with BEN or BEN and RTX using DLBCL models. Results The combination of YM155 with BEN decreased cell viability to a greater extent than either single agent alone in DB, SU-DHL-8, and WSU-DLCL2 human DLBCL cell lines. Bliss additivism analysis revealed that the combined effects were synergistic. In addition The combination of YM155 with BEN induced a greater sub-G1 population, indicative of apoptosis, than either agent alone. The percentages of sub-G1 population induced by YM155, bendamustine, and combination of both were 5.9%, 6.5%, and 27% in DB cells; 19%, 32%, and 58% in SU-DHL-8 cells; and 46%, 30%, and 71% in WSU-DLCL2 cells, respectively. BEN induced γ-histone 2AX (γ-H2AX), a marker of DNA damage and phosphorylation of ATM substrates including p53, and check point kinase-2 (Chk2) which leads to phosphorylation of cdc2. Further BEN induced G2/M arrest associated with the increase of survivin. The combination of YM155 with BEN inhibited phosphorylation of p53, chk2, and cdc2 and accumulation of survivin at G2/M phase, and induced greater DNA damage and cleaved PARP than either single agent alone. In human DLBCL DB xenografts, 7-day continuous s.c. infusion of YM155 at 1 mg/kg/day enhanced antitumor activity of BEN at 50 mg/kg (i.v.) and induced complete regressions in 6 out of 8 mice without affecting body weight. Further, in an activated B-cell-like (ABC)-DLBCL disseminated xenograft model, the combination of YM155 with BEN and RTX significantly prolonged survival associated with the decrease in the FLT-PET signals in lymph node compare with either the combination of BEN with RTX and YM155 with RTX. Conclusions Our data indicates that YM155 enhances the antitumor activity of BEN against DLBCL models through inhibition of DNA damage responses as well as survivin accumulation at the G2/M phase. Further, triple combination of YM155 with BEN and RTX showed survival benefit in comparison with either BEN-RTX combination or YM155-RTX combination, supporting the further clinical investigation of this triple combination for the treatment of relapsed or refractory DLBCL. Reference: 1. Ohmachi et al. J Clin Oncol. 2013 Jun 10;31(17):2103-9 2. Papadopoulos et al. American Society of Hematology Annual meeting Abstract No. 2731. 2012. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Author(s):  
Baptiste Eluard ◽  
Stéphanie Nuan-Aliman ◽  
Nathalie Faumont ◽  
Davi Collares ◽  
Didier Bordereaux ◽  
...  

Diffuse large B-cell lymphoma (DLBCL) is the most frequent lymphoid malignancy affecting adults. NF-kB transcription factor family is activated by two main pathways, the canonical and the alternative NF-kB activation pathways with different functions. The alternative NF-kB pathway leads to the activation of the transcriptionally active RelB NF-kB subunit. Alternative NF-kB activation status and its role in DLBCL pathogenesis remain undefined. Here, we reveal a frequent activation of RelB in a large cohort of DLBCL patients and cell lines, independently of their ABC or GCB subtypes. RelB activity defines a new subset of DLBCL patients with a peculiar gene expression profile and mutational pattern. Importantly, RelB activation does not correlate with the MCD genetic subtype, enriched for ABC tumors carrying MYD88L265P and CD79B mutations that cooperatively activate canonical NF-kB, thus indicating that current genetic tools to evaluate NF-kB activity in DLBCL do not provide information on the alternative NF-kB activation. Further, the newly defined RelB-positive subgroup of DLBCL patients exhibits a dismal outcome following immunochemotherapy. Functional studies revealed that RelB confers DLBCL cell resistance to DNA-damage induced apoptosis in response to doxorubicin, a genotoxic agent used in front-line treatment for DLBCL. We also show that RelB positivity is associated with high expression of cIAP2. Altogether, RelB activation can be used to refine the prognostic stratification of DLBCL and may contribute to subvert the therapeutic DNA damage response in a segment of DLBCL patients.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2732-2732
Author(s):  
Enrico Derenzini ◽  
Ilaria Iacobucci ◽  
Elisa Brighenti ◽  
Federica Cattina ◽  
Richard Eric Davis ◽  
...  

Abstract Abstract 2732 The checkpoint kinases 1 (CHK1) and 2 (CHK2) are serine-threonine kinases involved in the signal transduction mechanims of the DNA damage response pathway. Once activated by upstream kinases [Ataxia-Telangiectasia mutated (ATM) and Ataxia-Telangiectasia and Rad3-related (ATR) kinases] following DNA damage, they phosphorylate downstream targets such as CDC25 phosphatases and p53, promoting G2/M cell cycle arrest, in order to facilitate DNA repair. Furthermore is now clear that the efficacy of conventional DNA-damaging anticancer drugs is limited by the activity of these protective cell cycle checkpoints. The tumor suppressor p53 is activated in normal cells following extensive DNA damage and promotes G1 cell cycle arrest and apoptosis. Cells lacking p53 activity are more resistant to genotoxic agents. It has been shown that CHK inhibition enhances the efficacy of DNA damaging agents in a variety of tumors, by inhibiting the response to DNA damage, preferentially in p53 deficient cells, that rely on the G2/M checkpoint, having a dysfunctional G1 checkpoint. DLBCL harboring p53 mutations and/or CDKN2A loss have been recently shown to have a dismal outcome, being refractory to conventional antracyclin-based chemotherapy. Few data are available on the role of CHK inhibitors in Diffuse Large B cell Lymphoma (DLBCL). In this study we report the activity profile of the CHK1/2 inhibitor PF-0477736 (Pfizer) in a large panel of B cell lymphoma cell lines, and explore its mechanisms of action. Nine cell lines were used for in vitro viability assays: 3 Germinal center (GCB) Diffuse Large B-cell lymphoma (DLBCL) derived cell lines (SUDHL-4, SHDHL-6, BJAB), 3 Activated B cell (ABC) DLBCL (HBL-1, U2932, TMD8), 2 mantle cell lymphoma (Mino, SP-53), and the Hodgkin Lymphoma cell line KM-H2. All the cell lines were screened for p53 and CDKN2A mutations and deletions. P53 mutations were detected in the following cell lines: HBL-1, U2932, SUDHL-6, BJAB, Mino, SP-53. TMD8 was p53 wild-type but an homozygous deletion of CDKN2A was detected. Of note SUDHL-4 and KM-H2 were p53 wild type, with no deletion of CDKN2A. To assess the effect of PF-0477736 on cell proliferation, cells were first incubated with increasing concentrations of PF-0477736 (from 5 to 2000 nM) for 24, 48 and 72 hours (hrs), and cell viability assessed by WST-1 assay (Roche). A significant growth inhibition was evident after 48 hrs of incubation, in all cell lines, excluding SUDHL-4 and KM-H2 that were resistant (IC50 8300 and 6800 nM at 48 hrs, respectively). The BJAB cell line showed the highest sensitivity, with a decrease in cell viability close to 50% following incubation with PF-0477736 10nM for 24 hours. The IC50 ranged from 140 to 230 nM at 48 hrs in the other sensitive cell lines. Using Annexin V- propidium iodide staining, we found that PF-0477736 250–500 nM induced cell death by apoptosis in a time and dose dependent manner after 24 and 48 hours of incubation. Lower concentrations of PF-0477736 (25–50 nM) promoted a statistically significant increase in cell death only in the BJAB cells. For functional studies we characterized the two most sensitive cell lines (BJAB and U2932) and the two resistant cell lines (SUDHL-4 and KM-H2). Inhibition of cdc25c ser216 phosphorylation was observed by western blot as soon as after 24 hrs of incubation with concentrations equal to the IC50 (25–250 nM). A marked increase in levels of the DNA damage marker γH2AX, was detected in the BJAB, U2932, SUDHL-4 cell lines after 24 hrs. KM-H2 did not show any increase of γH2AX following treatment. All the cell lines demonstrated baseline CHK1 activation but there was no correlation with outcome. Interestingly levels of baseline pcdc25c ser216 were higher in the sensitive BJAB and U2932 cells. PF-0477736 at the fixed dose of 50 nM synergistically enhanced the efficacy of Doxorubicin (0.1 to 1 μM) in the BJAB and U2932 cells at 24 hrs. These data suggest that PF-0477736 has single agent activity and synergizes with chemotherapy in DLBCL. The integrity of the p53 axis seems to be the major determinant of efficacy of PF-0477736. The drug shows high single agent activity in the subset of DLBCL with genomic lesions of the p53 pathway, that are resistant to conventional chemotherapy and associated with dismal outcome. Our study provides the rationale for further clinical investigation of PF-0477736 in DLBCL alone or in combination with chemotherapy. PF-0477736 was provided by Pfizer. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 43-43
Author(s):  
Artavazd Arumov ◽  
Piumi Y. Liyanage ◽  
Asaad Trabolsi ◽  
Evan R. Roberts ◽  
Braulio C. L. B. Ferreira ◽  
...  

Diffuse large B-cell lymphoma (DLBCL) comprises a third of non-Hodgkin lymphoma (NHL), with incidence steadily rising in what is already the most common hematologic malignancy. The backbone of potentially curative frontline chemoimmunotherapy combinations like R-CHOP is doxorubicin (Dox), still considered the most active anti-lymphoma agent. Relapsed or refractory (rel/ref) disease after frontline treatment carries persistently poor prognosis, even with recent advances in immunotherapy. Development and implementation of new therapeutic strategies remain urgent priorities to address unmet clinical needs in both high-risk previously untreated and rel/ref patients. We have studied transferrin receptor (TFR1) expression as a marker of high-risk DLBCL revealing significantly worse outcomes following frontline therapy associated with high expression in diagnostic samples. TFR1 is therefore a rational target for treatments aimed specifically at high-risk DLBCL. We used third-generation carbon-nitride dot (CND) nanocarriers we have developed conjugated to Dox and holo-transferrin (TF) to develop a chemotherapeutic-nanocarrier (NanoDox) designed to deliver Dox to TFR1-expressing tumors while sparing non-malignant tissues. Dox's mechanism is primarily through nuclear DNA damage or induction of reactive oxygen species (ROS) H202. We treated DLBCL cell lines with NanoDox or Dox for 24-hours and observed induction of nuclear DNA damage marker γ-H2Ax at drastically lower doses (10 nM NanoDox vs. 100 nM Dox). Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay results yielded similar findings in BJAB cells, as observed under γ-H2Ax analysis, with TUNEL induction at significantly lower NanoDox concentrations. Treatment with NanoDox did not generate significant changes in ROS H202 when compared to Dox at 24-hours. Dox is known for a strong cytotoxic profile that extends past its terminal half-life of 24-36 hours. Therefore, we treated BJAB, Farage and DHL4 cells for 24-hours with a range of NanoDox and Dox doses, followed by washout and tracked cell viability for 6 additional days. We found as low as 10 nM NanoDox induced rapid and irreversible cytotoxicity, an effect only seen at much higher doses of Dox. These results combined with fluorescent confocal microscopy studies confirmed NanoDox works primarily through rapid nuclear Dox accumulation, causing DNA damage and apoptosis. Building on initial NanoDox dosing studies in NOD Scid Gamma (NSG) mice, we constructed R-nanoCHOP as an alternate to R-CHOP by replacing Dox with NanoDox at a working dose (WD) of 33.0 mg/kg. We next engrafted patient-derived xenograft (PDX) tumors derived from a previously untreated patient with germinal center B-cell (GCB) subtype DLBCL. We randomized NSG animals to two groups at tumor engraftment and treated with 21-day cycles of R-nanoCHOP (n=10) or R-CHOP (n=11). The treatments controlled tumor volume (TV) similarly, but R-nanoCHOP significantly improved overall survival associated with greatly reduced toxicities to host animals, which tolerated an average of 2 additional cycles of R-nanoCHOP. Studies with murine cells in vitro, including A20 B-cell lymphoma cells, confirmed these effects were not due to species differences, with human holo-TF alone and as part of NanoDox binding mouse and human TFR1 with equal affinity. This work establishes proof of principle in DLBCL for targeting TFR1, a specific marker of clinically high-risk disease. CND nanocarriers provide a flexible platform to exploit this, with our initial studies enhancing the safety profile of Dox, which remains the most active frontline DLBCL agent more than 50 years after it entered use. We are now optimizing NanoDox by substituting the holo-TF with an anti-TFR1 single chain variable fragment (scFv), decreasing size of the overall nanoconjugate by >50%. We believe dosing optimization from this change and additional optimizations to Dox delivery intracellularly will permit investigational new drug (IND) studies of absorption, distribution, metabolism and excretion (ADME). In sum, we provide compelling clinically relevant evidence for targeting TFR1 in DLBCL as a new therapeutic approach. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 817-817 ◽  
Author(s):  
Mohamed Rahmani ◽  
Mandy Aust ◽  
LaShanale Wallace ◽  
Steven Grant

Abstract Dysregulation of the PI3K/AKT/mTOR pathway and histone deacetylases (HDACs) has been described in diffuse large B-cell lymphoma (DLBCL). Previous studies demonstrated that combined treatment with PI3K/AKT pathway signaling inhibitors (e.g., LY294002, or perifosine) and histone deacetylase inhibitors (HDACis, e.g., sodium butyrate, vorinostat) resulted in a dramatic induction of apoptosis in human myeloid leukemia cells (Rahmani et al., Oncogene 22:6231-42, 2003; Rahmani et al., Cancer Res 65:2422-32, 2005). Here we examined interactions between the clinically relevant dual PI3K/mTOR inhibitor BEZ235 and the pan-HDACi panobinostat (both Novartis) in DLBCL cells. Notably, combined treatment with BEZ235 (25-200 nM) and panobinostat (5-15 nM) resulted in sharp decreases in cell growth and viability and profound induction of mitochondrial dysfunction and apoptosis. These events were observed in various DLBCL cell lines including both GC-DLBCL (SUDHL4, SUDHL16, OCI-LY7) and ABC-DLBCL (HBL-1, TMD8) as well as in mantle cell lymphoma cells (JeKo-1). Enhanced lethality of this regimen was accompanied by a marked increase in cytochrome c and AIF release into the cytosol, caspase-3 activation, and PARP cleavage. It was also associated with down-regulation of Mcl-1, a pronounced increase in H3 and H4 acetylation, and up-regulation of phospho- gH2AX, an indicator of DNA damage (e.g., DNA double-strand breaks). In addition, panobinostat robustly induced p21CIP1 accumulation in DLBCL cells, an event that was largely abrogated by BEZ235. Of note, treatment with BEZ235 alone or in combination with panobinostat triggered a decrease in GSK3 phosphorylation and levels of its downstream target, b-catenin consistent with GSK3 activation. Interestingly, inhibition of GSK3 by CHIR-98014 or the GSK3 inhibitor IX (BIO), but not its inactive analogue MeBIO, significantly diminished BEZ235/panobinostat lethality, arguing that GSK3 activation plays a significant functional role in lethality. Immunoprecipitation studies revealed that down-regulation of Mcl-1 was associated with enhanced binding of Bim to Bcl-xL and Bcl-2 and a marked decrease in Bak binding to Bcl-xL. In addition, knockdown of Bak also markedly diminished BEZ235/panobinostat-mediated lethality, as assessed by Annexin V/PI positivity. Together, these findings suggest that Bak plays a key functional role in the pronounced activity of BEZ235/panobinostat toward DLBCL cells. They also raise the possibility that BEZ235 may enhance panobinostat lethality by increasing Bim binding to Bcl-xL/Bcl-2, leading to the release of Bak/Bax from Bcl-2/Bcl-xL, culminating in apoptosis. Significantly, HS-5 stromal cell-conditioned media failed to protect DLBCL cells from combined panobinostat/BEZ235 treatment, suggesting that this strategy may be effective in circumventing microenvironmental forms of resistance. Combined treatment also exhibited robust activity against primary DLBCL cells, whereas exposure to the same regimens did not significantly reduce the viability of normal CD34+ progenitor cells nor did it reduce their clonogenic potential. Finally, in vivo studies utilizing a murine xenograft model bearing SUDHL4 cells revealed that co-treatment with BEZ235 and panobinostat markedly reduced in vivo tumor growth, whereas agents administered individually exhibited only modest effects. In addition, Kaplan-Meier analysis revealed that combined treatment significantly prolonged the survival of mice; in contrast, single agents were ineffective in increasing survival. Together, these findings suggest that the anti-DLBCL activities of combined BEZ235 and panobinostat treatment may involve multiple mechanisms, including Mcl-1 down-regulation, increased Bim binding to Bcl-2/Bcl-xL, release of Bak from Bcl-xL, abrogation of p21CIP1 accumulation, induction of DNA damage, and GSK3 activation, culminating in Bax/Bak activation and apoptosis. These findings raise the possibility that combining PI3K/AKT/mTOR inhibitors (e.g., BEZ235) and HDACis (e.g., panobinostat), may represent a novel and effective strategy against various DLBCL subtypes and possibly other hematologic malignancies. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document