scholarly journals Differential impact of severe drought on infant mortality in two sympatric neotropical primates

2020 ◽  
Vol 7 (4) ◽  
pp. 200302 ◽  
Author(s):  
Fernando A. Campos ◽  
Urs Kalbitzer ◽  
Amanda D. Melin ◽  
Jeremy D. Hogan ◽  
Saul E. Cheves ◽  
...  

Extreme climate events can have important consequences for the dynamics of natural populations, and severe droughts are predicted to become more common and intense due to climate change. We analysed infant mortality in relation to drought in two primate species (white-faced capuchins, Cebus capucinus imitator, and Geoffroy's spider monkeys, Ateles geoffroyi ) in a tropical dry forest in northwestern Costa Rica. Our survival analyses combine several rare and valuable long-term datasets, including long-term primate life-history, landscape-scale fruit abundance, food-tree mortality, and climate conditions. Infant capuchins showed a threshold mortality response to drought, with exceptionally high mortality during a period of intense drought, but not during periods of moderate water shortage. By contrast, spider monkey females stopped reproducing during severe drought, and the mortality of infant spider monkeys peaked later during a period of low fruit abundance and high food-tree mortality linked to the drought. These divergent patterns implicate differing physiology, behaviour or associated factors in shaping species-specific drought responses. Our findings link predictions about the Earth's changing climate to environmental influences on primate mortality risk and thereby improve our understanding of how the increasing severity and frequency of droughts will affect the dynamics and conservation of wild primates.

2008 ◽  
Vol 38 (12) ◽  
pp. 3002-3010 ◽  
Author(s):  
María L. Suarez ◽  
Thomas Kitzberger

Severe droughts have the potential of inducing transient shifts in forest canopy composition by altering species-specific adult tree mortality patterns. However, permanent vegetation change will occur only if tree recruitment patterns are also affected. Here, we analyze how a massive mortality event triggered by the 1998–1999 drought affected adult and sapling mortality and recruitment in a mixed Nothofagus dombeyi (Mirb.) Blume – Austrocedrus chilensis (D. Don) Flor. et Boult. forests of northern Patagonia. Comparing drought-induced and tree-fall gaps, we assessed changes in forest composition, microenvironments, and seedling density and survival of both species. Drought-kill disturbance shifted species composition of both canopy and sapling cohorts in favour of A. chilensis. Drought gaps were characterized by a shadier and more xeric environment, affecting the recruitment pattern of N. dombeyi seedlings. The seedling cohort was composed mostly of A. chilensis, and its survival was always higher than that of N. dombeyi. Additionally, A. chilensis seedlings showed higher plasticity than N. dombeyi seedlings, increasing its root to shoot ratios in drought gaps. The results suggest that extreme drought itself is a strong driving force in forest dynamics, with important imprints on forest landscapes. Future climate-change scenarios, projecting an increased in frequency and severity of droughts, alert us about expected long-term compositional shifts in many forest ecosystems.


2017 ◽  
Vol 284 (1853) ◽  
pp. 20170412 ◽  
Author(s):  
Rachel D. Irons ◽  
April Harding Scurr ◽  
Alexandra P. Rose ◽  
Julie C. Hagelin ◽  
Tricia Blake ◽  
...  

While the ecological effects of climate change have been widely observed, most efforts to document these impacts in terrestrial systems have concentrated on the impacts of temperature. We used tree swallow ( Tachycineta bicolor ) nest observations from two widely separated sites in central Alaska to examine the aspects of climate affecting breeding phenology at the northern extent of this species' range. We found that two measures of breeding phenology, annual lay and hatch dates, are more strongly predicted by windiness and precipitation than by temperature. At our longest-monitored site, breeding phenology has advanced at nearly twice the rate seen in more southern populations, and these changes correspond to long-term declines in windiness. Overall, adverse spring climate conditions known to negatively impact foraging success of swallows (wet, windy weather) appear to influence breeding phenology more than variation in temperature. Separate analyses show that short windy periods significantly delay initiation of individual clutches within years. While past reviews have emphasized that increasing variability in climate conditions may create physiological and ecological challenges for natural populations, we find that long-term reductions in inclement weather corresponded to earlier reproduction in one of our study populations. To better predict climate change impacts, ecologists need to more carefully test effects of multiple climate variables, including some, like windiness, that may be of paramount importance to some species, but have rarely been considered as strong drivers of ecological responses to climate alteration.


2005 ◽  
Vol 93 (6) ◽  
pp. 1085-1093 ◽  
Author(s):  
REBECCA C. MUELLER ◽  
CRESCENT M. SCUDDER ◽  
MARIANNE E. PORTER ◽  
R. TALBOT TROTTER ◽  
CATHERINE A. GEHRING ◽  
...  

2016 ◽  
Author(s):  
Á.G. Muñoz ◽  
M. C. Thomson ◽  
L. Goddard ◽  
S. Aldighieri

AbstractBackgroundThe emergence of Zika virus (ZIKV) as a public health emergency in Latin America and the Caribbean (LAC) occurred during a period of severe drought and unusually high temperatures. Speculation in the literature exists that these climate conditions were associated with the 2015/2016 El Niño event and/or climate change but to date no quantitative assessment has been made. Analysis of related flaviviruses –such as dengue and chikungunya, which are transmitted by the same vectors– suggests that ZIKV dynamics is sensitive to climate seasonality and longer-term variability and trends. A better understanding the climate conditions conducive to the 2014-2016 epidemic may permit the development of climate-informed short- and long-term strategies for ZIKV prevention and control.ResultsUsing a novel timescale-decomposition methodology, we demonstrate that extreme climate anomalies observed in most parts of South America during the current epidemic are not caused exclusively by El Niño or climate change –as speculated–, but are the result of a particular combination of climate signals acting at multiple timescales. In Brazil, the heart of the epidemic, we find that dry conditions present during 2013-2015 are explained primarily by year-to-year variability superimposed on decadal variability, but with little contribution of long-term trends. In contrast, the extreme warm temperatures of 2014-2015 resulted from the compound effect of climate change, decadal and year-to-year climate variability.ConclusionsZIKV response strategies adapted for a drought context in Brazil during El Niño 2015/2016 may need to be revised to accommodate the likely return of heavy rainfall associated with the probable 2016/2017 La Niña. Temperatures are likely to remain warm given the importance of long term and decadal scale climate signals.


2021 ◽  
Author(s):  
Eli Ryan Bendall ◽  
Michael Bedward ◽  
Matthias Boer ◽  
Hamish Clarke ◽  
Luke Collins ◽  
...  

Abstract Elevated tree mortality and reduced recruitment of new trees linked to drought and fires has been reported across a range of forests over the last few decades. Forests that resprout new foliage epicormically from buds beneath the bark are considered highly resilient to disturbance, but are potentially at risk of elevated mortality, demographic shifts and changes to species composition due to synergistic effects of drought and fire. Despite this, the effects of drought-fire interactions on such forests remain largely unknown. We assessed the effects of drought severity and fire frequency on juvenile mortality, post-fire seedling recruitment and replacement of juvenile trees (balance of recruitment minus mortality) following fire. We compared dry ridgetop and wet gully assemblages across a temperate forest in southern Australia. Both forest types experienced higher rates of fire-induced juvenile mortality in areas that had experienced severe drought compared to moderate drought, though mortality rates were generally low across all drought and fire combinations. This result indicated that topographic position (i.e. wet gullies) did little to moderate juvenile mortality when exposed to severe drought plus fire. In wet forest, severe drought also reduced recruitment and replacement of dead juveniles by post-fire seedlings compared to moderate drought. In dry forest net-negative replacement increased with the severity of drought. Across both forest types, the total pool of juveniles was reduced under severe drought. Future increases in the frequency of coupled severe drought and fire will likely increase the susceptibility of resilient temperate forests to major changes in structure and function.


2005 ◽  
Vol 44 (7) ◽  
pp. 1152-1158 ◽  
Author(s):  
Paul A. Knapp ◽  
Peter T. Soulé

Abstract In mid-autumn 2002, an exceptional 5-day cold spell affected much of the interior Pacific Northwest, with minimum temperatures averaging 13°C below long-term means (1953–2002). On 31 October, minimum temperature records occurred at 98 of the 106 recording stations, with records lowered in some locations by 9°C. Calculation of recurrence intervals of minimum temperatures shows that 50% of the stations experienced a >500-yr event. The synoptic conditions responsible were the development of a pronounced high pressure ridge over western Canada and an intense low pressure area centered in the Intermountain West that promoted strong northeasterly winds. The cold spell occurred near the end of the growing season for an ecologically critical and dominant tree species of the interior Pacific Northwest—western juniper—and followed an extended period of severe drought. In spring 2003, it became apparent that the cold had caused high rates of tree mortality and canopy dieback in a species that is remarkable for its longevity and resistance to climatic stress. The cold event altered western juniper dominance in some areas, and this alteration may have long-term impacts on water budgets, fire intensities and frequencies, animal species interrelationships, and interspecific competition among plant species.


2021 ◽  
Author(s):  
Drew Peltier ◽  
Mariah Carbone ◽  
Christopher Ebert ◽  
Xiaomei Xu ◽  
Henry Adams ◽  
...  

<div> <div> <div> <p>Under increasingly frequent, persistent, and severe drought events, predicting future forest carbon dynamics necessitates quantitative understanding of the physiological processes leading to tree mortality and physiological impairment. The responses of non-structural carbon (NSC; primarily sugars and starch) pools in mature trees is particularly important, as dynamics in NSC interact with hydraulic damage to perturb future tree growth. However, NSC concentration measurements alone are not suUcient to understand the stress responses of tree NSC pools formed over years to decades. Thus, we are using radiocarbon (14C) to quantify the age of NSC stored within, and used by, piñon pine trees exposed to either severe or long-term drought stress at the Sevilleta LTER, in New Mexico, USA. Measuring the age of NSC allows inference on the storage history of a tree, and how different NSC pools may be altered by drought. Experimental plots are subjected to either 0% (control) or 90% reduction in precipitation. A 45% precipitation reduction plot has also been in place since 2009, offering a chance to study the impacts of a decade of drought. We are measuring Δ14C of NSC in twigs, bole sapwood, and coarse roots, as well as in CO2 respired from the bole and branches. Our goal is to quantify the role of different-aged NSC pools across tree organs in driving whole-tree physiological responses to drought. Preliminary results show that the long-term droughted trees store and respire on average younger NSC than control trees. Ongoing drought treatments and sampling will provide additional information on how NSC dynamics in these trees are influenced by drought.</p> </div> </div> </div>


2018 ◽  
Vol 194 ◽  
pp. 188-192
Author(s):  
D. I. Shokasheva

Natural populations of crayfish are in depression in Russia and local species are not cultivated. In this situation, experimental cultivation of allochtonous australian crayfish Cherax quadricarinatus is conducted. This species is distinguished by high reproductive abilities and good consumer properties. It has domesticated in Russia spontaneously and produced 9–10 generations in Astrakhan Region. Certain natural selection in the process of domestication provides adaptive ability of this species to local environments and its capabil­ity to reproduce a viable progeny, so there is no doubts in good prospects of its cultivation in industrial conditions.


Author(s):  
L.V. Vetchinnikova ◽  
◽  
A.F. Titov ◽  
◽  

The article reports on the application of the best known principles for mapping natural populations of curly (Karelian) birch Betula pendula Roth var. carelica (Mercklin) Hämet-Ahti – one of the most appealing representatives of the forest tree flora. Relying on the synthesis and analysis of the published data amassed over nearly 100 years and the data from own full-scale studies done in the past few decades almost throughout the area where curly birch has grown naturally, it is concluded that its range outlined in the middle of the 20th century and since then hardly revised is outdated. The key factors and reasons necessitating its revision are specified. Herewith it is suggested that the range is delineated using the population approach, and the key element will be the critical population size below which the population is no longer viable in the long term. This approach implies that the boundaries of the taxon range depend on the boundaries of local populations (rather than the locations of individual trees or small clumps of trees), the size of which should not be lower than the critical value, which is supposed to be around 100–500 trees for curly birch. A schematic map of the curly birch range delineated using this approach is provided. We specially address the problem of determining the minimum population size to secure genetic diversity maintenance. The advantages of the population approach to delineating the distribution range of curly birch with regard to its biological features are highlighted. The authors argue that it enables a more accurate delineation of the range; shows the natural evolutionary history of the taxon (although it is not yet officially recognized as a species) and its range; can be relatively easily updated (e.g. depending on the scope of reintroduction); should be taken into account when working on the strategy of conservation and other actions designed to maintain and regenerate this unique representative of the forest tree flora.


2021 ◽  
Vol 289 ◽  
pp. 110433
Author(s):  
Koichi Nomura ◽  
Daisuke Yasutake ◽  
Takahiro Kaneko ◽  
Tadashige Iwao ◽  
Takashi Okayasu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document