The smooth transition to a convective régime in a two-dimensional box

The fluid motion in a two-dimensional box heated from below is considered. The horizontal surfaces are taken to be free and isothermal while the sidewalls are first taken to be rigid and perfect insulators. Linear stability theory shows that the critical Rayleigh number for the onset of convection is higher than that when no side walls are present and the eigenvalue spectrum is discrete. Finite amplitude theory shows that the onset of convection is sudden, that is, bifurcation occurs. The effect of allowing the sidewalls to be slightly imperfect insulators is also investigated. It is found that if the boundary conditions of the sidewalls depart only slightly from those given above, there is a significant change in the response of the fluid. In the most general circumstances a resonance of the free mode is excited as the Rayleigh number approaches its critical value and finite amplitude effects become important. Then it is shown that the onset of convection is quite smooth and the concept of a sharp bifurcation at a critical Rayleigh number is no longer tenable. For a particular class of imperfections it is shown that a ‘transcritical’ bifurcation as described by Benjamin (1976) is possible. The limiting case of a very long box is given special consideration.

1968 ◽  
Vol 34 (2) ◽  
pp. 315-336 ◽  
Author(s):  
George Veronis

A stabilizing gradient of solute inhibits the onset of convection in a fluid which is subjected to an adverse temperature gradient. Furthermore, the onset of instability may occur as an oscillatory motion because of the stabilizing effect of the solute. These results are obtained from linear stability theory which is reviewed briefly in the following paper before finite-amplitude results for two-dimensional flows are considered. It is found that a finite-amplitude instability may occur first for fluids with a Prandtl number somewhat smaller than unity. When the Prandtl number is equal to unity or greater, instability first sets in as an oscillatory motion which subsequently becomes unstable to disturbances which lead to steady, convecting cellular motions with larger heat flux. A solute Rayleigh number, Rs, is defined with the stabilizing solute gradient replacing the destabilizing temperature gradient in the thermal Rayleigh number. When Rs is large compared with the critical Rayleigh number of ordinary Bénard convection, the value of the Rayleigh number at which instability to finite-amplitude steady modes can set in approaches the value of Rs. Hence, asymptotically this type of instability is established when the fluid is marginally stratified. Also, as Rs → ∞ an effective diffusion coefficient, Kρ, is defined as the ratio of the vertical density flux to the density gradient evaluated at the boundary and it is found that κρ = √(κκs) where κ, κs are the diffusion coefficients for temperature and solute respectively. A study is made of the oscillatory behaviour of the fluid when the oscillations have finite amplitudes; the periods of the oscillations are found to increase with amplitude. The horizontally averaged density gradients change sign with height in the oscillating flows. Stably stratified fluid exists near the boundaries and unstably stratified fluid occupies the mid-regions for most of the oscillatory cycle. Thus the step-like behaviour of the density field which has been observed experimentally for time-dependent flows is encountered here numerically.


1987 ◽  
Vol 42 (1) ◽  
pp. 13-20
Author(s):  
B. S. Dandapat

The onset of convection in a horizontal layer of a saturated porous medium heated from below and rotating about a vertical axis with uniform angular velocity is investigated. It is shown that when S ∈ σ >1, overstability cannot occur, where ε is the porosity, σ the Prandtl number and S is related to the heat capacities of the solid and the interstitial fluid. It is also shown that for small values of the rotation parameter T1, finite amplitude motion with subcritical values of Rayleigh number R (i.e. R < Re, where Re is the critical Rayleigh number according to linear stability theory) is possible. For large values of T1, overstability is the preferred mode.


1975 ◽  
Vol 70 (4) ◽  
pp. 689-703 ◽  
Author(s):  
Eric Graham

A procedure for obtaining numerical solutions to the equations describing thermal convection in a compressible fluid is outlined. The method is applied to the case of a perfect gas with constant viscosity and thermal conductivity. The fluid is considered to be confined in a rectangular region by fixed slippery boundaries and motions are restricted to two dimensions. The upper and lower boundaries are maintained at fixed temperatures and the side boundaries are thermally insulating. The resulting convection problem can be characterized by six dimension-less parameters. The onset of convection has been studied both by obtaining solutions to the nonlinear equations in the neighbourhood of the critical Rayleigh number Rc and by solving the linear stability problem. Solutions have been obtained for values of the Rayleigh number up to 100Rc and for pressure variations of a factor of 300 within the fluid. In some cases the fluid velocity is comparable to the local sound speed. The Nusselt number increases with decreasing Prandtl number for moderate values of the depth parameter. Steady finite amplitude solutions have been found in all the cases considered. As the horizontal dimension A of the rectangle is increased, the length of time needed to reach a steady state also increases. For large values of A the solution consists of a number of rolls. Even for small values of A, no solutions have been found where one roll is vertically above another.


1984 ◽  
Vol 106 (1) ◽  
pp. 137-142 ◽  
Author(s):  
M. Kaviany

The onset of convection due to a nonlinear and time-dependent temperature stratification in a saturated porous medium with upper and lower free surfaces is considered. The initial parabolic temperature distribution is due to uniform internal heating. The medium is then cooled by decreasing the upper surface temperature linearly with time. Linear stability theory is applied to the more formally developed governing equations. In order to obtain an asymptotic solution for transient problems involving very long time scales, the critical Rayleigh number for steady-state, nonlinear temperature distribution is also obtained. The effects of porosity, permeability, and Prandtl number on the time of the onset of convection are examined. The steady-state results show that the critical Rayleigh number depends only on the ratio of porosity to permeability and when this ratio exceeds a value of one thousand, the critical Rayleigh number is directly proportional to this ratio.


The local nonlinear stability of thermal convection in fluid-saturated porous media, subjected to an adverse temperature gradient, is investigated. The critical Rayleigh number at the onset of convection and the corresponding heat transfer are determined. An approximate analytical method is presented to determine the form and amplitude of convection. To facilitate the determination of the physically preferred cell pattern, a detailed study of both two- and three-dimensional motions is made and a very good agreement with available experimental data is found. The finite-amplitude effects on the horizontal wavenumber, and the effect of the Prandtl number on the motion are discussed in detail. We find that, when the Rayleigh number is just greater than the critical value, two dimensional motion is more likely than three-dimensional motion, and the heat transport is shown to have two regions for n =1. In particular, it is shown that optimum heat transport occurs for a mixed horizontal plan form formed by the linear combination of general rectangular and square cells. Since an infinite number of steady-state finite-amplitude solutions exist for Rayleigh numbers greater than the critical number A c * , a relative stability criterion is discussed th at selects the realized solution as that having the maximum mean-square temperature gradient.


Author(s):  
Saneshan Govender ◽  
Peter Vadasz

We investigate Rayleigh-Benard convection in a porous layer subjected to gravitational and Coriolis body forces, when the fluid and solid phases are not in local thermodynamic equilibrium. The Darcy model (extended to include Coriolis effects and anisotropic permeability) is used to describe the flow whilst the two-equation model is used for the energy equation (for the solid and fluid phases separately). The linear stability theory is used to evaluate the critical Rayleigh number for the onset of convection and the effect of both thermal and mechanical anisotropy on the critical Rayleigh number is discussed.


The theory of the nonlinear development of Benard convection in an infinite fluid layer confined between horizontal boundaries predicts that the amplitude of the motion undergoes a bifurcation as the Rayleigh number passes through the critical value for instability predicted by linear theory. Segel (1969) has shown that this is also the case if the flow is confined laterally by rigid perfectly insulating sidewalls. In the present paper it is shown that if there is a small heat transfer through these walls (so that the boundary conditions there are inconsistent with a state of no motion) the bifurcation is in general replaced by a smooth transition to finite amplitude convection. This effect also ensures that the motion is stable. Although an idealized theoretical model is assumed in which the flow is two-dimensional and stress-free at the horizontal boundaries, the results apply qualitatively to more realistic models.


1995 ◽  
Vol 117 (4) ◽  
pp. 808-821 ◽  
Author(s):  
R. J. Goldstein ◽  
R. J. Volino

The onset and development of flow in a thick horizontal layer subject to a near-constant flux heating from below has been studied experimentally. The overall heat-flux-based Rayleigh number, Ra*, ranges from 2 × 108 to 7 × 1010. Flow visualization shows the growth and breakdown of a conduction layer adjacent to the heated surface. Convection is characterized by the release of warm meandering plumes and thermals from a boundary layer. The planform of convection at the heated surface begins with a pattern of small spots suggestive of Be´nard cells. Some of these cells expand, forming a larger cell pattern. This continues until a quasi-steady state is reached in which the former cell boundaries form a slowly moving pattern of warm lines on the heated surface. The lines are believed to be the source of the plumes and thermals. Quantitatively, the onset of convection occurs at a constant (critical) Rayleigh number based on the conduction layer thickness, Raδ. Based on the first observation of fluid motion, this critical Rayleigh number is approximately 1300. Based on the heated surface temperature the critical Rayleigh number is 2700. The nondimensional wavenumber associated with the observed instabilities at the onset of convection is about 2.2.


1984 ◽  
Vol 143 ◽  
pp. 125-152 ◽  
Author(s):  
P. G. Daniels

This paper considers the temporal evolution of two-dimensional Rayleigh–Bénard convection in a shallow fluid layer of aspect ratio 2L ([Gt ] 1) confined laterally by rigid sidewalls. Recent studies by Cross et al. (1980, 1983) have shown that for Rayleigh numbers in the range R = R0 + O(L−1) (where R0 is the critical Rayleigh number for the corresponding infinite layer) there exists a class of finite-amplitude steady-state ‘phase-winding’ solutions which correspond physically to the possibility of an adjustment in the number of rolls in the container as the local value of the Rayleigh number is varied. It has been shown (Daniels 1981) that in the temporal evolution of the system the final lateral positioning of the rolls occurs on the long timescale t = O(L2) when the phase function which determines the number of rolls in the system satisfies a one-dimensional diffusion equation but with novel boundary conditions that represent the effect of the sidewalls. In the present paper this system is solved numerically in order to determine the precise way in which the roll pattern adjusts after a change in the Rayleigh number of the system. There is an interesting balance between, on the one hand, a tendency for the number of rolls to change by the least number possible and, on the other, a tendency for the even or odd nature of the initial configuration to be preserved during the transition. In some cases this second property renders the natural evolution susceptible to arbitrarily small external disturbances, which then dictate the form of the final roll pattern.The complete transition involves an analysis of the motion on three timescales, a conductive scale t = O(1), a convective growth scale t = O(L) and a convective diffusion scale t = O(L2).


2021 ◽  
Vol 136 (3) ◽  
pp. 791-812
Author(s):  
Peder A. Tyvand ◽  
Jonas Kristiansen Nøland

AbstractThe onset of thermal convection in two-dimensional porous cavities heated from below is studied theoretically. An open (constant-pressure) boundary is assumed, with zero perturbation temperature (thermally conducting). The resulting eigenvalue problem is a full fourth-order problem without degeneracies. Numerical results are presented for rectangular and elliptical cavities, with the circle as a special case. The analytical solution for an upright rectangle confirms the numerical results. Streamlines penetrating the open cavities are plotted, together with the isotherms for the associated closed thermal cells. Isobars forming pressure cells are depicted for the perturbation pressure. The critical Rayleigh number is calculated as a function of geometric parameters, including the tilt angle of the rectangle and ellipse. An improved physical scaling of the Darcy–Bénard problem is suggested. Its significance is indicated by the ratio of maximal vertical velocity to maximal temperature perturbation.


Sign in / Sign up

Export Citation Format

Share Document