On the Effect of Mechanical and Thermal Anisotropy on the Stability of Gravity Driven Convection in Rotating Porous Media

Author(s):  
Saneshan Govender ◽  
Peter Vadasz

We investigate Rayleigh-Benard convection in a porous layer subjected to gravitational and Coriolis body forces, when the fluid and solid phases are not in local thermodynamic equilibrium. The Darcy model (extended to include Coriolis effects and anisotropic permeability) is used to describe the flow whilst the two-equation model is used for the energy equation (for the solid and fluid phases separately). The linear stability theory is used to evaluate the critical Rayleigh number for the onset of convection and the effect of both thermal and mechanical anisotropy on the critical Rayleigh number is discussed.

1987 ◽  
Vol 185 ◽  
pp. 205-234 ◽  
Author(s):  
R. W. Walden ◽  
Paul Kolodner ◽  
A. Passner ◽  
C. M. Surko

Heat-transport measurements are reported for thermal convection in a rectangular box of aspect’ ratio 10 x 5. Results are presented for Rayleigh numbers up to 35Rc, Prandtl numbers between 2 and 20, and wavenumbers between 0.6 and 1.0kc, where Rc and kc are the critical Rayleigh number and wavenumber for the onset of convection in a layer of infinite lateral extent. The measurements are in good agreement with a phenomenological model which combines the calculations of Nusselt number, as a function of Rayleigh number and roll wavenumber for two-dimensional convection in an infinite layer, with a nonlinear amplitude-equation model developed to account for sidewell attenuation. The appearance of bimodal convection increases the heat transport above that expected for simple parallel-roll convection.


2008 ◽  
Vol 130 (11) ◽  
Author(s):  
M. J. Kohl ◽  
M. Kristoffersen ◽  
F. A. Kulacki

Experiments are reported on initial instability, turbulence, and overall heat transfer in a porous medium heated from below. The porous medium comprises either water or a water-glycerin solution and randomly stacked glass spheres in an insulated cylinder of height:diameter ratio of 1.9. Heating is with a constant flux lower surface and a constant temperature upper surface, and the stability criterion is determined for a step heat input. The critical Rayleigh number for the onset of convection is obtained in terms of a length scale normalized to the thermal penetration depth as Rac=83/(1.08η−0.08η2) for 0.02<η<0.18. Steady convection in terms of the Nusselt and Rayleigh numbers is Nu=0.047Ra0.91Pr0.11(μ/μ0)0.72 for 100<Ra<5000. Time-averaged temperatures suggest the existence of a unicellular axisymmetric flow dominated by upflow over the central region of the heated surface. When turbulence is present, the magnitude and frequency of temperature fluctuations increase weakly with increasing Rayleigh number. Analysis of temperature fluctuations in the fluid provides an estimate of the speed of the upward moving thermals, which decreases with distance from the heated surface.


1984 ◽  
Vol 106 (1) ◽  
pp. 137-142 ◽  
Author(s):  
M. Kaviany

The onset of convection due to a nonlinear and time-dependent temperature stratification in a saturated porous medium with upper and lower free surfaces is considered. The initial parabolic temperature distribution is due to uniform internal heating. The medium is then cooled by decreasing the upper surface temperature linearly with time. Linear stability theory is applied to the more formally developed governing equations. In order to obtain an asymptotic solution for transient problems involving very long time scales, the critical Rayleigh number for steady-state, nonlinear temperature distribution is also obtained. The effects of porosity, permeability, and Prandtl number on the time of the onset of convection are examined. The steady-state results show that the critical Rayleigh number depends only on the ratio of porosity to permeability and when this ratio exceeds a value of one thousand, the critical Rayleigh number is directly proportional to this ratio.


1968 ◽  
Vol 34 (2) ◽  
pp. 315-336 ◽  
Author(s):  
George Veronis

A stabilizing gradient of solute inhibits the onset of convection in a fluid which is subjected to an adverse temperature gradient. Furthermore, the onset of instability may occur as an oscillatory motion because of the stabilizing effect of the solute. These results are obtained from linear stability theory which is reviewed briefly in the following paper before finite-amplitude results for two-dimensional flows are considered. It is found that a finite-amplitude instability may occur first for fluids with a Prandtl number somewhat smaller than unity. When the Prandtl number is equal to unity or greater, instability first sets in as an oscillatory motion which subsequently becomes unstable to disturbances which lead to steady, convecting cellular motions with larger heat flux. A solute Rayleigh number, Rs, is defined with the stabilizing solute gradient replacing the destabilizing temperature gradient in the thermal Rayleigh number. When Rs is large compared with the critical Rayleigh number of ordinary Bénard convection, the value of the Rayleigh number at which instability to finite-amplitude steady modes can set in approaches the value of Rs. Hence, asymptotically this type of instability is established when the fluid is marginally stratified. Also, as Rs → ∞ an effective diffusion coefficient, Kρ, is defined as the ratio of the vertical density flux to the density gradient evaluated at the boundary and it is found that κρ = √(κκs) where κ, κs are the diffusion coefficients for temperature and solute respectively. A study is made of the oscillatory behaviour of the fluid when the oscillations have finite amplitudes; the periods of the oscillations are found to increase with amplitude. The horizontally averaged density gradients change sign with height in the oscillating flows. Stably stratified fluid exists near the boundaries and unstably stratified fluid occupies the mid-regions for most of the oscillatory cycle. Thus the step-like behaviour of the density field which has been observed experimentally for time-dependent flows is encountered here numerically.


2017 ◽  
Vol 817 ◽  
pp. 264-305 ◽  
Author(s):  
Thierry Alboussière ◽  
Yanick Ricard

The linear stability threshold of the Rayleigh–Bénard configuration is analysed with compressible effects taken into account. It is assumed that the fluid under investigation obeys a Newtonian rheology and Fourier’s law of thermal transport with constant, uniform (dynamic) viscosity and thermal conductivity in a uniform gravity field. Top and bottom boundaries are maintained at different constant temperatures and we consider here mechanical boundary conditions of zero tangential stress and impermeable walls. Under these conditions, and with the Boussinesq approximation, Rayleigh (Phil. Mag., vol. 32 (192), 1916, pp. 529–546) first obtained analytically the critical value $27\unicode[STIX]{x03C0}^{4}/4$ for a dimensionless parameter, now known as the Rayleigh number, at the onset of convection. This paper describes the changes of the critical Rayleigh number due to the compressibility of the fluid, measured by the dimensionless dissipation parameter ${\mathcal{D}}$ and due to a finite temperature difference between the hot and cold boundaries, measured by a dimensionless temperature gradient $a$. Different equations of state are examined: ideal gas equation, Murnaghan’s model (often used to describe the interiors of solid but convective planets) and a generic equation of state with adjustable parameters, which can represent any possible equation of state. In the perspective to assess approximations often made in convective models, we also consider two variations of this stability analysis. In a so-called quasi-Boussinesq model, we consider that density perturbations are solely due to temperature perturbations. In a so-called quasi-anelastic liquid approximation model, we consider that entropy perturbations are solely due to temperature perturbations. In addition to the numerical Chebyshev-based stability analysis, an analytical approximation is obtained when temperature fluctuations are written as a combination of only two modes, one being the original symmetrical (between top and bottom) mode introduced by Rayleigh, the other one being antisymmetrical. The analytical solution allows us to show that the antisymmetrical part of the critical eigenmode increases linearly with the parameters $a$ and ${\mathcal{D}}$, while the superadiabatic critical Rayleigh number departs quadratically in $a$ and ${\mathcal{D}}$ from $27\unicode[STIX]{x03C0}^{4}/4$. For any arbitrary equation of state, the coefficients of the quadratic departure are determined analytically from the coefficients of the expansion of density up to degree three in terms of pressure and temperature.


2021 ◽  
Vol 88 (1-2) ◽  
pp. 08
Author(s):  
A. S. Aruna ◽  
V. Ramachandramurthy ◽  
N. Kavitha

The present paper aims at weak non-linear stability analysis followed by linear analysis of nite-amplitude Rayleigh-Benard magneto convection problem in an electrically conducting Newtonian liquid with heat source/sink. It is shown that the internal Rayleigh number, ther- morheological parameter, and the Chandrasekhar number in uence the onset of convection. The generalized Lorenz model derived for the prob- lem is essentially the classical Lorenz model but with some coecient depending on the variable heat source (sink), viscosity, and the applied magnetic eld. The result of the parameters' in uence on the critical Rayleigh number explains their in uence on the Nusselt number. It is found that an increasing strength of the magnetic eld is to stabilize the system and diminishes heat transport whereas the heat source and variable viscosity in-tandem to work system unstable and enhances heat transfer.


1987 ◽  
Vol 109 (4) ◽  
pp. 889-893 ◽  
Author(s):  
L. P. Kwok ◽  
C. F. Chen

Experiments were carried out to study the stability of thermal convection generated in a vertical porous layer by lateral heating in a tall, narrow tank. The porous medium, consisting of glass beads, was saturated with distilled water. It was found that the flow became unstable at a critical ΔT of 29.2°C (critical Rayleigh number of 66.2). Linear stability analysis was applied to study the effects of the Brinkman term and of variable viscosity separately using a quadratic relationship between the density and temperature. It was found that with the Brinkman term, no instability could occur within the allowable temperature difference across the tank. With the effect of variable viscosity included, linear stability theory predicts a critical ΔT of 43.4°C (Rayleigh number of 98.3).


The fluid motion in a two-dimensional box heated from below is considered. The horizontal surfaces are taken to be free and isothermal while the sidewalls are first taken to be rigid and perfect insulators. Linear stability theory shows that the critical Rayleigh number for the onset of convection is higher than that when no side walls are present and the eigenvalue spectrum is discrete. Finite amplitude theory shows that the onset of convection is sudden, that is, bifurcation occurs. The effect of allowing the sidewalls to be slightly imperfect insulators is also investigated. It is found that if the boundary conditions of the sidewalls depart only slightly from those given above, there is a significant change in the response of the fluid. In the most general circumstances a resonance of the free mode is excited as the Rayleigh number approaches its critical value and finite amplitude effects become important. Then it is shown that the onset of convection is quite smooth and the concept of a sharp bifurcation at a critical Rayleigh number is no longer tenable. For a particular class of imperfections it is shown that a ‘transcritical’ bifurcation as described by Benjamin (1976) is possible. The limiting case of a very long box is given special consideration.


1987 ◽  
Vol 42 (1) ◽  
pp. 13-20
Author(s):  
B. S. Dandapat

The onset of convection in a horizontal layer of a saturated porous medium heated from below and rotating about a vertical axis with uniform angular velocity is investigated. It is shown that when S ∈ σ >1, overstability cannot occur, where ε is the porosity, σ the Prandtl number and S is related to the heat capacities of the solid and the interstitial fluid. It is also shown that for small values of the rotation parameter T1, finite amplitude motion with subcritical values of Rayleigh number R (i.e. R < Re, where Re is the critical Rayleigh number according to linear stability theory) is possible. For large values of T1, overstability is the preferred mode.


Author(s):  
M M Sorour ◽  
M A Hassab ◽  
F A Elewa

The linear stability theory is applied to study the effect of suction on the stability criteria of a horizontal fluid layer confined between two thin porous surfaces heated from below. This investigation covers a wide range of Reynolds number 0 ≥ Re ≥ 30, and Prandtl number 0.72 ≥ Pr ≥ 100. The results show that the critical Rayleigh number increases with Peclet number, and is independent of Pr as far as Re < 3. However, for Re > 3 the critical Rayleigh number is function of both Pr and Pe. In addition, the analysis is extended to study the effect of suction on the stability of two special superimposed fluid layers. The results in the latter case indicate a more stabilizing effect. Furthermore, the effect of thermal boundary conditions is also investigated.


Sign in / Sign up

Export Citation Format

Share Document