scholarly journals Mountain uplift explains differences in Palaeogene patterns of mammalian evolution and extinction between North America and Europe

2015 ◽  
Vol 282 (1809) ◽  
pp. 20150136 ◽  
Author(s):  
Jussi T. Eronen ◽  
Christine M. Janis ◽  
C. Page Chamberlain ◽  
Andreas Mulch

Patterns of late Palaeogene mammalian evolution appear to be very different between Eurasia and North America. Around the Eocene–Oligocene (EO) transition global temperatures in the Northern Hemisphere plummet: following this, European mammal faunas undergo a profound extinction event (the Grande Coupure), while in North America they appear to pass through this temperature event unscathed. Here, we investigate the role of surface uplift to environmental change and mammalian evolution through the Palaeogene (66–23 Ma). Palaeogene regional surface uplift in North America caused large-scale reorganization of precipitation patterns, particularly in the continental interior, in accord with our combined stable isotope and ecometric data. Changes in mammalian faunas reflect that these were dry and high-elevation palaeoenvironments. The scenario of Middle to Late Eocene (50–37 Ma) surface uplift, together with decreasing precipitation in higher-altitude regions of western North America, explains the enigma of the apparent lack of the large-scale mammal faunal change around the EO transition that characterized western Europe. We suggest that North American mammalian faunas were already pre-adapted to cooler and drier conditions preceding the EO boundary, resulting from the effects of a protracted history of surface uplift.

1992 ◽  
Vol 6 ◽  
pp. 105-105
Author(s):  
Norman O. Frederiksen

Studies of Eocene angiosperm pollen floras in eastern North America (my work, especially in the eastern Gulf Coast) and western Europe (Boulter, Krutzsch) have shown significant differences in floral diversities between the two regions: in western Europe, maximum diversity was in the early Eocene and it decreased thereafter, in eastern North America, maximum diversity was in the middle part of the middle Eocene. The hypothesis presented here is that paleogeography was an important control on the diversity histories in the two regions: eastern North America was part of a large terrestrial landmass, whereas the terrestrial depositional basins of western Europe were on islands or peninsulas surrounded by the sea. Migrations between eastern and western North America were relatively easy, but migrations within what is now western Europe involved island-hopping, which explains distinct diachroneity of some angiosperm first appearances among different basins there. Western European basins were in contact with a large land mass during late Paleocene time but became isolated and smaller during the middle to late Eocene marine transgression. These changes resulted in decreased genetic exchange and increased probabilities of extinction due to (1) greater competition among species because of a reduced number of niches and (2) presence of small, isolated species populations, leading to local variations in extinctions, which probably explain the observed diachronism of taxon last appearances in different areas of Europe. Terrestrial climatic cooling in western Europe may be linked to decreasing contact between the NW European Tertiary Basin and the warm Tethys Seaway during the middle and late Eocene. In short, some combination of low environmental heterogeneity, geographic isolation, and long-term climatic deterioration probably caused the decrease in angiosperm diversity during the middle and late Eocene in western Europe.Several factors encouraged increasing or stable diversity in eastern North America but were far less effective in western Europe: (1) Eastern North America underwent greater climatic fluctuations during the Eocene (thus, immigration of taxa with different climatic preferences took place at different times), whereas the islands and peninsulas of western Europe had more uniform, maritime climates. (2) Evolution and immigration of r-selected taxa in eastern North America were favored by distinct dry seasons at certain times during the Eocene and by repeated marine transgressions and regressions that created opportunities for evolution and immigration of r-selected plants on and to freshly exposed coastal plain. In contrast, the predominantly maritime climates of western Europe in the early and middle Eocene favored K-selected plants, which had fewer possibilities for evolution and which had greater difficulty in migrating because island-hopping taxa are mainly r-selected. (3) “Arcto-Tertiary” taxa adapted to cooler climates lived and evolved in the uplands of the Appalachian Mountains, whereas western Europe was relatively flat in the Eocene –another example of its relative lack of environmental heterogeneity.


1966 ◽  
Vol 264 (5) ◽  
pp. 321-349 ◽  
Author(s):  
C. C. Black ◽  
M. R. Dawson

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Łucja Fostowicz-Frelik ◽  
Sergi López-Torres ◽  
Qian Li

AbstractIschyromyids are a group of large rodents with the earliest fossil record known from the late Paleocene (Clarkforkian) of North America; they are considered the earliest fossil representatives of Rodentia of modern aspect. Ischyromyids dominated early Paleogene small-mammal assemblages of North America and in the latest Paleocene migrated to western Europe and to Asia; in the latter they survived only to the beginning of the late Eocene, but were never abundant. Here we describe for the first time the calcanei of ischyromyids from the early middle Eocene of the Erlian Basin in Nei Mongol, northern China. These calcanei document the existence of three species. The morphology of the studied tarsal bones overall suggests ambulatory locomotion for these animals (‘slow cursors’), similar to that of the coypu and porcupines, but one form shows more marked cursorial capabilities. These differences show that Chinese ischyromyids, although rare, had attained greater taxonomic diversity by the middle Eocene in Nei Mongol than estimated from dental remains. We also address the question of the morphological and ecological divergence of these ischyromyids in relation to their North American counterparts, as well as the issue of a direct dispersal route from North America to Asia in the early Eocene.


2021 ◽  
Author(s):  
Lydian M Boschman ◽  
Fabien L Condamine

Mountainous areas host a disproportionately large fraction of Earth's biodiversity, suggesting a causal relationship between mountain building and biological diversification. Mountain clade radiations are generally associated with environmental heterogeneity, and with ecological opportunities created during the formation of high-elevation habitats. In South America, most documented Andean clade radiations are recent (Neogene) and rapid. However, so far only few studies have explicitly linked Andean elevation to species diversification. Here, we present a curve of Andean elevation based on a recent compilation of paleo-elevational data back to the Late Cretaceous, and analyse the diversification history of six Andean frog and lizard families that originated equally far back in time. For two clades (Aromobatidae and Leptodactylidae), we find that they diversified most rapidly during the early phase of mountain building (Late Cretaceous - Paleogene), when the first high-elevation habitats emerged in South America. The diversification of two other clades (Centrolenidae and Dendrobatidae) are correlated with Cenozoic temperature variations, with higher speciation (and for Dendrobatidae, also higher extinction) rates during warm periods. The last two clades (Hemiphractidae and Liolaemidae) are best explained by environment-independent diversification, although for Liolaemidae, an almost equally strong positive correlation was found between speciation and Andean elevation since the late Eocene. Our findings imply that throughout the long-lived history of surface uplift in the Andes, mountain building drove the diversification of different clades at different times, while not directly affecting other clades. Our study illustrates the importance of paleogeographic reconstructions that capture the complexity and heterogeneity of mountain building in our understanding of the effects that a changing environment plays in shaping biodiversity patterns observed today.


2021 ◽  
Author(s):  
Nicolas Perez-Consuegra ◽  
Richard Ott ◽  
Gregory D. Hoke ◽  
Jorge Pedro Galve ◽  
Jose Vicente Pérez–Peña

<p>The tropical Northern Andes of Colombia are one the world's most biodiverse places, offering an ideal location for unraveling the linkages between the geodynamic forces that build topography and the evolution of the biota that inhabit it. In this study, we utilize a geomorphic analysis to characterize the topography of the Western and Central Cordilleras of the Northern Andes. We supplement our topographic analysis with erosion rate estimates based on gauged suspended sediment loads and river incision rates from volcanic sequences. In the northern segment of the Central Cordillera, an elevated low-relief surface (2,500m in elevation, ~40x110 km in size) with uniform lithology and surrounded by knickpoints, indicates a recent increase in rock and surface uplift rate. Whereas, the southern segment of the Central Cordillera shows substantially higher local relief and mostly well graded river profiles consistent with longer term uplift stability. These changes in the topography fit with the proposed location of a slab tear and flat slab subduction under the northern Central Cordillera, as well as with a major transition in the channel slope of the Cauca River. We identify several areas of major drainage reorganization, including captures and divide migrations that are supported by our erosion and incision rate estimates. We identify slab flattening as the most likely cause of strong and recent uplift in the Northern Andes leading to ~2 km of surface uplift since 8–4 Ma. Large scale drainage reorganization of major rivers is probably mainly driven by changes in upper plate deformation in relation to development of the flat slab subduction geometry; however, other factors such as climate and emplacement of volcanic rocks likely play secondary roles in this process. Several isolated biologic observations above the area of slab flattening suggest that surface uplift isolated former lowland species on the high elevation plateaus, and drainage reorganization may have driven diversification of aquatic species.</p>


2013 ◽  
Vol 87 (5) ◽  
pp. 826-841 ◽  
Author(s):  
Richard L. Squires

The west coast of North America record of the shallow-marine stromboid gastropod genusRimellaAgassiz, 1841 is restudied for the first time in 90 years. This genus comprises a small group of Paleogene gastropods characterized by having an ornamented fusiform shell, a posterior canal ascending the spire, and simple (non-flared) outer lip.Rimella, whose familial ranking has been inconsistent, is placed here in family Rostellariidae Gabb, 1868, subfamily Rimellinae Stewart, 1927.EctinochilusCossmann, 1889;MacilentosClark and Palmer, 1923;VaderosClark and Palmer, 1923; andCowlitziaClark and Palmer, 1923 are recognized here as junior synonyms ofRimella. Four species are recognized from the west coast of North America: early to middle EoceneRimella macilentaWhite, 1889; early EoceneRimella oregonensisTurner, 1938; middle to late EoceneRimella supraplicata(Gabb, 1864) new combination, of whichRostellaria canaliferGabb, 1864,Cowlitizia washingtonensisClark and Palmer, 1923, andCowlitzia problematicaHanna, 1927 are recognized here as junior synonyms; and late EoceneRimella elongataWeaver, 1912.Rimellawas a warm-water gastropod whose earliest known record is of early Paleocene (Danian) age in Pakistan. Other than the west coast of North America,Rimellais found in Eocene strata in western Europe, Turkey, Egypt, Pakistan, southeastern United States, Panama, Peru, and, to a lesser degree, in Trinidad, Columbia, Java, and New Zealand. Global cooling near the end of the Eocene greatly diminished the genus. Its youngest known occurrences are of early Oligocene age in Germany, Italy, England, and Peru.


Author(s):  
Ron Harris

Before the seventeenth century, trade across Eurasia was mostly conducted in short segments along the Silk Route and Indian Ocean. Business was organized in family firms, merchant networks, and state-owned enterprises, and dominated by Chinese, Indian, and Arabic traders. However, around 1600 the first two joint-stock corporations, the English and Dutch East India Companies, were established. This book tells the story of overland and maritime trade without Europeans, of European Cape Route trade without corporations, and of how new, large-scale, and impersonal organizations arose in Europe to control long-distance trade for more than three centuries. It shows that by 1700, the scene and methods for global trade had dramatically changed: Dutch and English merchants shepherded goods directly from China and India to northwestern Europe. To understand this transformation, the book compares the organizational forms used in four major regions: China, India, the Middle East, and Western Europe. The English and Dutch were the last to leap into Eurasian trade, and they innovated in order to compete. They raised capital from passive investors through impersonal stock markets and their joint-stock corporations deployed more capital, ships, and agents to deliver goods from their origins to consumers. The book explores the history behind a cornerstone of the modern economy, and how this organizational revolution contributed to the formation of global trade and the creation of the business corporation as a key factor in Europe's economic rise.


1987 ◽  
Vol 19 (9) ◽  
pp. 155-174
Author(s):  
Henk L. F. Saeijs

The Delta Project is in its final stage. In 1974 it was subjected to political reconsideration, but it is scheduled now for completion in 1987. The final touches are being put to the storm-surge barrier and two compartment dams that divide the Oosterschelde into three areas: one tidal, one with reduced tide, and one a freshwater lake. Compartmentalization will result in 13% of channels, 45% of intertidal flats and 59% of salt marshes being lost. There is a net gain of 7% of shallow-water areas. Human interventions with large scale impacts are not new in the Oosterschelde but the large scale and short time in which these interventions are taking place are, as is the creation of a controlled tidal system. This article focusses on the area with reduced tide and compares resent day and expected characteristics. In this reduced tidal part salt marshes will extend by 30–70%; intertidal flats will erode to a lower level and at their edges, and the area of shallow water will increase by 47%. Biomass production on the intertidal flats will decrease, with consequences for crustaceans, fishes and birds. The maximum number of waders counted on one day and the number of ‘bird-days' will decrease drastically, with negative effects for the wader populations of western Europe. The net area with a hard substratum in the reduced tidal part has more than doubled. Channels will become shallower. Detritus import will not change significantly. Stratification and oxygen depletion will be rare and local. The operation of the storm-surge barrier and the closure strategy chosen are very important for the ecosystem. Two optional closure strategies can be followed without any additional environmental consequences. It was essential to determine a clearly defined plan of action for the whole area, and to make land-use choices from the outset. How this was done is briefly described.


Sign in / Sign up

Export Citation Format

Share Document