Changes in the potential distribution of humid tropical forests on a warmer planet

Author(s):  
Przemyslaw Zelazowski ◽  
Yadvinder Malhi ◽  
Chris Huntingford ◽  
Stephen Sitch ◽  
Joshua B. Fisher

The future of tropical forests has become one of the iconic issues in climate-change science. A number of studies that have explored this subject have tended to focus on the output from one or a few climate models, which work at low spatial resolution, whereas society and conservation-relevant assessment of potential impacts requires a finer scale. This study focuses on the role of climate on the current and future distribution of humid tropical forests (HTFs). We first characterize their contemporary climatological niche using annual rainfall and maximum climatological water stress, which also adequately describe the current distribution of other biomes within the tropics. As a first-order approximation of the potential extent of HTFs in future climate regimes defined by global warming of 2 ° C and 4 ° C, we investigate changes in the niche through a combination of climate-change anomaly patterns and higher resolution (5 km) maps of current climatology. The climate anomalies are derived using data from 17 coupled Atmosphere–Ocean General Circulation Models (AOGCMs) used in the Fourth Assessment of the Intergovernmental Panel for Climate Change. Our results confirm some risk of forest retreat, especially in eastern Amazonia, Central America and parts of Africa, but also indicate a potential for expansion in other regions, for example around the Congo Basin. The finer spatial scale enabled the depiction of potential resilient and vulnerable zones with practically useful detail. We further refine these estimates by considering the impact of new environmental regimes on plant water demand using the UK Met Office land-surface scheme (of the HadCM3 AOGCM). The CO 2 -related reduction in plant water demand lowers the risk of die-back and can lead to possible niche expansion in many regions. The analysis presented here focuses primarily on hydrological determinants of HTF extent. We conclude by discussing the role of other factors, notably the physiological effects of higher temperature.

Hydrology ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 85
Author(s):  
Yogendra Mishra ◽  
Mukand Singh Babel ◽  
Tai Nakamura ◽  
Bhogendra Mishra

The diminishing spring discharge in the Middle Mountain Zone (MMZ) in Nepal is a matter of concern because it directly affects the livelihoods of low-income farmers in the region. Therefore, understanding the impacts of changes in climate and land-use patterns on water demand and availability is crucial. We investigated the impact of climate change on streamflow and environmental flow, and the demand for spring-fed river water for irrigation using the limited meteorological data available for the Babai River Basin, Nepal. SWAT and CROPWAT8.0 were used to respectively calculate present and future streamflow and irrigation water demand. Three general circulation models under two representative concentration pathways (RCPs 4.5 and 8.5) for the periods of 2020–2044, 2045–2069, and 2070–2099 were used to investigate the impact of climate change. Results indicate that the catchment is likely to experience an increase in rainfall and temperature in the future. The impact of the increment in rainfall and rise in temperature are replicated in the annual river flow that is anticipated to increase by 24–37%, to the historical data of 1991–2014. Despite this increase, projections show that the Babai River Basin will remain a water deficit basin from January to May in future decades.


Author(s):  
Diana Fiorillo ◽  
Zoran Kapelan ◽  
Maria Xenochristou ◽  
Francesco De Paola ◽  
Maurizio Giugni

AbstractAssessing the impact of climate change on water demand is a challenging task. This paper proposes a novel methodology that quantifies this impact by establishing a link between water demand and weather based on climate change scenarios, via Coupled General Circulation Models. These models simulate the response of the global climate system to increasing greenhouse gas concentrations by reproducing atmospheric and ocean processes. In order to establish the link between water demand and weather, Random Forest models based on weather variables were used. This methodology was applied to a district metered area in Naples (Italy). Results demonstrate that the total district water demand may increase by 9–10% during the weeks with the highest temperatures. Furthermore, results show that the increase in water demand changes depending on the social characteristics of the users. The water demand of employed users with high education may increase by 13–15% when the highest temperatures occur. These increases can seriously affect the capacity and operation of existing water systems.


2019 ◽  
Vol 11 (4) ◽  
pp. 1724-1747 ◽  
Author(s):  
M. Allani ◽  
R. Mezzi ◽  
A. Zouabi ◽  
R. Béji ◽  
F. Joumade-Mansouri ◽  
...  

Abstract This study evaluates the impacts of climate change on water supply and demand of the Nebhana dam system. Future climate change scenarios were obtained from five general circulation models (GCMs) of CMIP5 under RCP 4.5 and 8.5 emission scenarios for the time periods, 2021–2040, 2041–2060 and 2061–2080. Statistical downscaling was applied using LARS-WG. The GR2M hydrological model was calibrated, validated and used as input to the WEAP model to assess future water availability. Expected crop growth cycle lengths were estimated using a growing degree days model. By means of the WEAP-MABIA method, projected crop and irrigation water requirements were estimated. Results show an average increase in annual ETo of 6.1% and a decrease in annual rainfall of 11.4%, leading to a 24% decrease in inflow. Also, crops' growing cycles will decrease from 5.4% for wheat to 31% for citrus trees. The same tendency is observed for ETc. Concerning irrigation requirement, variations are more moderated depending on RCPs and time periods, and is explained by rainfall and crop cycle duration variations. As for demand and supply, results currently show that supply does not meet the system demand. Climate change could worsen the situation unless better planning of water surface use is done.


Hydrology ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 61 ◽  
Author(s):  
Kleoniki Demertzi ◽  
Dimitris Papadimos ◽  
Vassilis Aschonitis ◽  
Dimitris Papamichail

This study proposes a simplistic model for assessing the hydroclimatic vulnerability of lakes/reservoirs (LRs) that preserve their steady-state conditions based on regulated superficial discharge (Qd) out of the LR drainage basin. The model is a modification of the Bracht-Flyr et al. method that was initially proposed for natural lakes in closed basins with no superficial discharge outside the basin (Qd = 0) and under water-limited environmental conditions {mean annual ratio of potential/reference evapotranspiration (ETo) versus rainfall (P) greater than 1}. In the proposed modified approach, an additional Qd function is included. The modified model is applied using as a case study the Oreastiada Lake, which is located inside the Kastoria basin in Greece. Six years of observed data of P, ETo, Qd, and lake topography were used to calibrate the modified model based on the current conditions. The calibrated model was also used to assess the future lake conditions based on the future climatic projections (mean conditions of 2061-2080) derived by 19 general circulation models (GCMs) for three cases of climate change (three cases of Representative Concentration Pathways: RCP2.6, RCP4.5 and RCP8.5). The modified method can be used as a diagnostic tool in water-limited environments for analyzing the superficial discharge changes of LRs under different climatic conditions and to support the design of new management strategies for mitigating the impact of climate change on (a) flooding conditions, (b) hydroelectric production, (c) irrigation/industrial/domestic use and (d) minimum ecological flows to downstream rivers.


2012 ◽  
Vol 3 (3) ◽  
pp. 207-224 ◽  
Author(s):  
Dao Nguyen Khoi ◽  
Tadashi Suetsugi

The Be River Catchment was studied to quantify the potential impact of climate change on the streamflow using a multi-model ensemble approach. Climate change scenarios (A1B and B1) were developed from an ensemble of four GCMs (general circulation models) (CGCM3.1 (T63), CM2.0, CM2.1 and HadCM3) that showed good performance for the Be River Catchment through statistical evaluations between 15 GCM control simulations and the corresponding time series of observations at annual and monthly levels. The Soil and Water Assessment Tool (SWAT) was used to investigate the impact on streamflow under climate change scenarios. The model was calibrated and validated using daily streamflow records. The calibration and validation results indicated that the SWAT model was able to simulate the streamflow well, with Nash–Sutcliffe efficiency exceeding 0.78 for the Phuoc Long station and 0.65 for the Phuoc Hoa station, for both calibration and validation at daily and monthly steps. Their differences in simulating the streamflow under future climate scenarios were also investigated. The results indicate a 1.0–2.9 °C increase in annual temperature and a −4.0 to 0.7% change in annual precipitation corresponding to a change in streamflow of −6.0 to −0.4%. Large decreases in precipitation and runoff are observed in the dry season.


2014 ◽  
Vol 65 (2) ◽  
pp. 194 ◽  
Author(s):  
D. C. Phelan ◽  
D. Parsons ◽  
S. N. Lisson ◽  
G. K. Holz ◽  
N. D. MacLeod

Although geographically small, Tasmania has a diverse range of regional climates that are affected by different synoptic influences. Consequently, changes in climate variables and climate-change impacts will likely vary in different regions of the state. This study aims to quantify the regional effects of projected climate change on the productivity of rainfed pastoral and wheat crop systems at five sites across Tasmania. Projected climate data for each site were obtained from the Climate Futures for Tasmania project (CFT). Six General Circulation Models were dynamically downscaled to ~10-km grid cells using the CSIRO Conformal Cubic Atmospheric Model under the A2 emissions scenario for the period 1961–2100. Mean daily maximum and minimum temperatures at each site are projected to increase from a baseline period (1981–2010) to 2085 (2071–2100) by 2.3–2.7°C. Mean annual rainfall is projected to increase slightly at all sites. Impacts on pasture and wheat production were simulated for each site using the projected CFT climate data. Mean annual pasture yields are projected to increase from the baseline to 2085 largely due to an increase in spring pasture growth. However, summer growth of temperate pasture species may become limited by 2085 due to greater soil moisture deficits. Wheat yields are also projected to increase, particularly at sites presently temperature-limited. This study suggests that increased temperatures and elevated atmospheric CO2 concentrations are likely to increase regional rainfed pasture and wheat production in the absence of any significant changes in rainfall patterns.


2019 ◽  
pp. 355-367 ◽  
Author(s):  
D. Romero ◽  
J. Olivero ◽  
R. Real

Our limited understanding of the complexity of nature generates uncertainty in mathematical and cartographical models used to predict the effects of climate change on species’ distributions. We developed predictive models of distributional range shifts of threatened vertebrate species in mainland Spain, and in their accumulation in biodiversity hotspots due to climate change. We considered two relevant sources of climatological uncertainty that affect predictions of future climate: general circulation models and socio–economic scenarios. We also examined the relative importance of climate as a driver of species’ distribution and taxonomic uncertainty as additional biogeographical causes of uncertainty. Uncertainty was detected in all the forecasts derived from models in which climate was a significant explanatory factor, and in the species with taxonomic uncertainty. Uncertainty in forecasts was mainly located in areas not occupied by the species, and increased with time difference from the present. Mapping this uncertainty allowed us to assess the consistency of predictions regarding future changes in the distribution of hotspots of threatened vertebrates in Spain.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 867 ◽  
Author(s):  
Li-Chun Peng ◽  
Yu-Pin Lin ◽  
Guan-Wei Chen ◽  
Wan-Yu Lien

Hydrologic ecosystem services are greatly affected by the changing climate. In this study, the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model was used to quantify hydrologic ecosystem services. Five general circulation models (GCMs) and two representative concentration pathways (RCPs) were selected to estimate hydrologic ecosystem services. The Local Indicators of Spatial Association (LISA) index was used to identify hydrologic ecosystem hotspots. The hotspots were used to evaluate the impact of climate change on the services. Results indicate that annual water yields vary from −17% to 8%, with significant intra-year fluctuation. Compared to baseline data, the CESM1-CAM5 predicts an increase of 45% in June, but HadGEM2-AO predicts a drop to only 12% in January. Sediment export results show a similar trend to water yield, with sediment export increasing significantly under RCP 8.5, and monthly sediment export increases concentrated from June and October. Nitrogen and phosphorous exports both show less significant changes but obvious intra-year variations. The CESM1-CAM5 predicts strong seasonal and spatial variation of the hydrologic ecosystem services. Our proposed approach successfully identifies annual and monthly hotspot spatial changes of hydrologic ecosystem services under climate change.


2016 ◽  
Vol 21 (5) ◽  
pp. 581-602 ◽  
Author(s):  
Juliano Assunção ◽  
Flávia Chein

AbstractThis paper evaluates the impact of climate change on agricultural productivity. Cross-sectional variation in climate among Brazilian municipalities is used to estimate an equation in which geographical attributes determine agricultural productivity. The Intergovernmental Panel on Climate Change (IPCC) predictions based on atmosphere–ocean, coupled with general circulation models (for 2030–2049), are used to simulate the impacts of climate change. Our estimates suggest that global warming under the current technological standards is expected to decrease the agricultural output per hectare in Brazil by 18 per cent, with the effects on municipalities ranging from−40 to+15 per cent.


2011 ◽  
Vol 12 (6) ◽  
pp. 1205-1220 ◽  
Author(s):  
Wai Kwok Wong ◽  
Stein Beldring ◽  
Torill Engen-Skaugen ◽  
Ingjerd Haddeland ◽  
Hege Hisdal

Abstract This study examines the impact of climate change on droughts in Norway. A spatially distributed (1 × 1 km2) version of the Hydrologiska Byråns Vattenbalansavdelning (HBV) precipitation-runoff model was used to provide hydrological data for the analyses. Downscaled daily temperature and precipitation derived from two atmosphere–ocean general circulation models with two future emission scenarios were applied as input to the HBV model. The differences in hydroclimatological drought characteristics in the summer season between the periods 1961–90 and 2071–2100 were studied. The threshold level method was adopted to select drought events for both present and future climates. Changes in both the duration and spatial extent of precipitation, soil moisture, runoff, and groundwater droughts were identified. Despite small changes in future meteorological drought characteristics, substantial increases in hydrological drought duration and drought affected areas are expected, especially in the southern and northernmost parts of the country. Reduced summer precipitation is a major factor that affects changes in drought characteristics in the south while temperature increases play a more dominant role for the rest of the country.


Sign in / Sign up

Export Citation Format

Share Document