CD8+ cell noncytotoxic anti-human immunodeficiency virus response inhibits expression of viral RNA but not reverse transcription or provirus integration

Microbiology ◽  
2000 ◽  
Vol 81 (5) ◽  
pp. 1261-1264 ◽  
Author(s):  
Carl E. Mackewicz ◽  
Bruce K. Patterson ◽  
Sandra A. Lee ◽  
Jay A. Levy

CD8+ T cells from human immunodeficiency virus (HIV)-infected individuals can suppress HIV replication in CD4+ cells by a noncytotoxic mechanism that inhibits the expression of viral RNA. The present study examined whether other step(s) in the virus replicative cycle could be affected by the CD8+ cells. Culturing HIV-infected CD4+ T cells with antiviral CD8+ T cells did not significantly reduce the amounts of (i) early HIV DNA reverse transcripts (detected by LTR-U3/R), (ii) total nuclear HIV gag DNA, or (iii) integrated proviral DNA. However, exposure to the CD8+ T cells did cause a reduction in the amount of multiply spliced tat and full-length gag mRNA expressed by the infected CD4+ T cells, confirming previous observations. The levels of glyceraldehyde-3-phosphate dehydrogenase and interleukin-2 receptor-α mRNA were not affected. The results support the conclusion that the noncytotoxic anti-HIV response of CD8+ T cells, demonstrable in vitro, does not affect any of the virus replication steps leading to the integration of proviral HIV, but specifically interrupts the expression of viral RNA.

2007 ◽  
Vol 82 (1) ◽  
pp. 471-486 ◽  
Author(s):  
R. Alvarez ◽  
J. Reading ◽  
D. F. L. King ◽  
M. Hayes ◽  
P. Easterbrook ◽  
...  

ABSTRACT Understanding why human immunodeficiency virus (HIV) preferentially infects some CD4+ CD45RO+ memory T cells has implications for antiviral immunity and pathogenesis. We report that differential expression of a novel secreted factor, ps20, previously implicated in tissue remodeling, may underlie why some CD4 T cells are preferentially targeted. We show that (i) there is a significant positive correlation between endogenous ps20 mRNA in diverse CD4 T-cell populations and in vitro infection, (ii) a ps20+ permissive cell can be made less permissive by antibody blockade- or small-interference RNA-mediated knockdown of endogenous ps20, and (iii) conversely, a ps20low cell can be more permissive by adding ps20 exogenously or engineering stable ps20 expression by retroviral transduction. ps20 expression is normally detectable in CD4 T cells after in vitro activation and interleukin-2 expansion, and such oligoclonal populations comprise ps20positive and ps20low/negative isogenic clones at an early differentiation stage (CD45RO+/CD25+/CD28+/CD57−). This pattern is altered in chronic HIV infection, where ex vivo CD4+ CD45RO+ T cells express elevated ps20. ps20 promoted HIV entry via fusion and augmented CD54 integrin expression; both of these effects were reversed by anti-ps20 antibody. We therefore propose ps20 to be a novel signature of HIV-permissive CD4 T cells that promotes infection in an autocrine and paracrine manner and that HIV has coopted a fundamental role of ps20 in promoting cell adhesion for its benefit. Disrupting the ps20 pathway may therefore provide a novel anti-HIV strategy.


2001 ◽  
Vol 75 (22) ◽  
pp. 10843-10855 ◽  
Author(s):  
Mirko Paiardini ◽  
Domenico Galati ◽  
Barbara Cervasi ◽  
Giuseppe Cannavo ◽  
Luca Galluzzi ◽  
...  

ABSTRACT Human immunodeficiency virus (HIV)-induced immunodeficiency is characterized by progressive loss of CD4+ T cells associated with functional abnormalities of the surviving lymphocytes. Increased susceptibility to apoptosis and loss of proper cell cycle control can be observed in lymphocytes from HIV-infected individuals and may contribute to the lymphocyte dysfunction of AIDS patients. To better understand the relation between T-cell activation, apoptosis, and cell cycle perturbation, we studied the effect of exogenous interleukin-2 (IL-2) administration on the intracellular turnover of phase-dependent proteins. Circulating T cells from HIV-infected patients display a marked discrepancy between a metabolic profile typical of G0 and a pattern of expression of phase-dependent proteins that indicates a more-advanced position within the cell cycle. This discrepancy is enhanced by in vitro activation with ConA and ultimately results in a marked increase of apoptotic events. Conversely, treatment of lymphocytes with IL-2 alone restores the phase-specific pattern of expression of cell cycle-dependent proteins and is associated with low levels of apoptosis. Interestingly, exogenous IL-2 administration normalizes the overall intracellular protein turnover, as measured by protein synthesis, half-life of newly synthesised proteins, and total protein ubiquitination, thus providing a possible explanation for the effect of IL-2 on the intracellular kinetics of cell cycle-dependent proteins. The beneficial effect of IL-2 administration is consistent with the possibility of defective IL-2 function in vivo, which is confirmed by the observation that lymphocytes from HIV-infected patients show abnormal endogenous IL-2 paracrine/autocrine function upon in vitro mitogen stimulation. Overall these results confirm that perturbation of cell cycle control contributes to HIV-related lymphocyte dysfunction and, by showing that IL-2 administration can revert this perturbation, suggest a new mechanism of action of IL-2 therapy in HIV-infected patients.


2008 ◽  
Vol 15 (9) ◽  
pp. 1398-1409 ◽  
Author(s):  
A. Weinberg ◽  
J. Spritzler ◽  
M. Nokta ◽  
R. Schrier ◽  
A. Landay ◽  
...  

ABSTRACT The aim of this study was to optimize the ability to detect cytomegalovirus (CMV)-specfic cell-mediated immunity (CMI) in human immunodeficiency virus (HIV)-infected individuals by comparing different assays (the lymphocyte proliferation assay [LPA] and assays for gamma interferon [IFN-γ] and interleukin-2 [IL-2] production) and CMV antigenic preparations. Thresholds discriminating positive from negative CMI results were developed with specimens from 36 CMV-seropositive and 21 CMV-seronegative healthy individuals. The analysis showed that the CMI elicited by any of the four CMV whole lysates tested in this study tended to be more robust and sensitive than the responses to the subunit antigens gB and pp65. LPA and inducible IFN-γ but not IL-2 were highly sensitive measures of CMV-specific CMI in HIV-infected and -uninfected individuals. The ability to detect CMV-specific LPA or IFN-γ responses in HIV-infected individuals significantly increased with higher CD4 cell numbers. Nevertheless, the proportion of HIV-infected subjects with CD4 counts of ≥500 cells/μl who had a detectable CMV-specific CMI remained significantly lower than that of healthy adults. The ability to detect CMV-specific CMI in HIV-infected individuals decreased with higher levels of HIV replication, with discriminative thresholds of 103 to 104 HIV RNA copies/ml of plasma, for LPA or inducible IFN-γ production elicited by different antigens. The LPA responses obtained with CMV whole lysate and phytohemagglutinin were significantly correlated in HIV-infected subjects but not uninfected controls, indicating a novel characteristic of the CMI defect caused by HIV. The intrasubject variabilities of the CMV-specific CMI were similar in HIV-infected and -uninfected individuals. These data show that LPA and the inducible IFN-γ production elicited by CMV whole lysates may be used to assess modifications of the immune competency of HIV-infected individuals.


2003 ◽  
Vol 77 (20) ◽  
pp. 10900-10909 ◽  
Author(s):  
Christiana Iyasere ◽  
John C. Tilton ◽  
Alison J. Johnson ◽  
Souheil Younes ◽  
Bader Yassine-Diab ◽  
...  

ABSTRACT Virus-specific CD4+ T-cell function is thought to play a central role in induction and maintenance of effective CD8+ T-cell responses in experimental animals or humans. However, the reasons that diminished proliferation of human immunodeficiency virus (HIV)-specific CD4+ T cells is observed in the majority of infected patients and the role of these diminished responses in the loss of control of replication during the chronic phase of HIV infection remain incompletely understood. In a cohort of 15 patients that were selected for particularly strong HIV-specific CD4+ T-cell responses, the effects of viremia on these responses were explored. Restriction of HIV replication was not observed during one to eight interruptions of antiretroviral therapy in the majority of patients (12 of 15). In each case, proliferative responses to HIV antigens were rapidly inhibited during viremia. The frequencies of cells that produce IFN-γ in response to Gag, Pol, and Nef peptide pools were maintained during an interruption of therapy. In a subset of patients with elevated frequencies of interleukin-2 (IL-2)-producing cells, IL-2 production in response to HIV antigens was diminished during viremia. Addition of exogenous IL-2 was sufficient to rescue in vitro proliferation of DR0101 class II Gag or Pol tetramer+ or total-Gag-specific CD4+ T cells. These observations suggest that, during viremia, diminished in vitro proliferation of HIV-specific CD4+ T cells is likely related to diminished IL-2 production. These results also suggest that relatively high frequencies of HIV-specific CD4+ T cells persist in the peripheral blood during viremia, are not replicatively senescent, and proliferate when IL-2 is provided exogenously.


2002 ◽  
Vol 76 (14) ◽  
pp. 6929-6943 ◽  
Author(s):  
Livia Pedroza-Martins ◽  
W. John Boscardin ◽  
Deborah J. Anisman-Posner ◽  
Dominique Schols ◽  
Yvonne J. Bryson ◽  
...  

ABSTRACT Early infection of the thymus with the human immunodeficiency virus (HIV) may explain the more rapid disease progression among children infected in utero than in children infected intrapartum. Therefore, we analyzed infection of thymocytes in vitro by HIV type 1 primary isolates, obtained at or near birth, from 10 children with different disease outcomes. HIV isolates able to replicate in the thymus and impact thymopoiesis were present in all infants, regardless of the timing of viral transmission and the rate of disease progression. Isolates from newborns utilized CCR5, CXCR4, or both chemokine receptors to enter thymocytes. Viral expression was observed in discrete thymocyte subsets postinfection with HIV isolates using CXCR4 (X4) and isolates using CCR5 (R5), despite the wider distribution of CXCR4 in the thymus. In contrast to previous findings, the X4 primary isolates were not more cytopathic for thymocytes than were the R5 isolates. The cytokines interleukin-2 (IL-2), IL-4, and IL-7 increased HIV replication in the thymus by inducing differentiation and expansion of mature CD27+ thymocytes expressing CXCR4 or CCR5. IL-2 and IL-4 together increased expression of CXCR4 and CCR5 in this population, whereas IL-4 and IL-7 increased CXCR4 but not CCR5 expression. IL-2 plus IL-4 increased the viral production of all pediatric isolates, but IL-4 and IL-7 had a significantly higher impact on the replication of X4 isolates compared to R5 isolates. Our studies suggest that coreceptor use by HIV primary isolates is important but is not the sole determinant of HIV pathogenesis in the thymus.


2000 ◽  
Vol 74 (10) ◽  
pp. 4456-4464 ◽  
Author(s):  
Sylvie Le Borgne ◽  
Michèle Février ◽  
Christian Callebaut ◽  
Steven P. Lee ◽  
Yves Rivière

ABSTRACT CD8+ lymphocytes from human immunodeficiency virus (HIV)-infected patients can suppress in vitro HIV replication in CD4+ T cells by a noncytolytic mechanism involving secreted CD8+-cell antiviral factor(s) (CAF). Using an HIV Nef-specific cytotoxic-T-lymphocyte (CTL) line and autologous CD4+ T cells infected with a nef-deleted HIV-1 virus, we demonstrated that, after a priming antigenic stimulation, this suppression does not require the presence of the specific antigen during the effector phase. Furthermore, using an Epstein-Barr virus (EBV)-specific CTL line from an HIV-seronegative donor, we demonstrated that the ability to inhibit HIV replication in a noncytolytic manner is not restricted to HIV-specific effector cells; indeed, EBV-specific CTL were as efficient as HIV-specific effectors in suppressing R5 or X4 HIV-1 strain replication in vitro. This HIV-suppressive activity mediated by a soluble factor(s) present in the culture supernatant was detectable for up to 14 days following stimulation of EBV-specific CD8+ cells with the cognate epitope peptide. Following acute infection of CEM cells with an X4 strain of HIV-1, EBV-specific CTL line supernatant containing HIV-suppressive activity did not block virus entry but was shown to interfere with virus replication after the first template switching of reverse transcription. Our results suggest that the noncytolytic control of HIV replication by EBV-specific CD8+ T lymphocytes corresponded to a CAF-like activity and thus demonstrate that CAF production may not be restricted to CTL induced during HIV disease. Moreover, CAF acts after reverse transcription at least for X4 isolate replication inhibition.


1993 ◽  
Vol 178 (4) ◽  
pp. 1151-1163 ◽  
Author(s):  
S K Stanley ◽  
J M McCune ◽  
H Kaneshima ◽  
J S Justement ◽  
M Sullivan ◽  
...  

Infection with the human immunodeficiency virus (HIV) results in immunosuppression and depletion of circulating CD4+ T cells. Since the thymus is the primary organ in which T cells mature it is of interest to examine the effects of HIV infection in this tissue. HIV infection has been demonstrated in the thymuses of infected individuals and thymocytes have been previously demonstrated to be susceptible to HIV infection both in vivo, using the SCID-hu mouse, and in vitro. The present study sought to determine which subsets of thymocytes were infected in the SCID-hu mouse model and to evaluate HIV-related alterations in the thymic microenvironment. Using two different primary HIV isolates, infection was found in CD4+/CD8+ double positive thymocytes as well as in both the CD4+ and CD8+ single positive subsets of thymocytes. The kinetics of infection and resulting viral burden differed among the three thymocyte subsets and depended on which HIV isolate was used for infection. Thymic epithelial (TE) cells were also shown to endocytose virus and to often contain copious amounts of viral RNA in the cytoplasm by in situ hybridization, although productive infection of these cells could not be definitively shown. Furthermore, degenerating TE cells were observed even without detection of HIV in the degenerating cells. Two striking morphologic patterns of infection were seen, involving either predominantly thymocyte infection and depletion, or TE cell involvement with detectable cytoplasmic viral RNA and/or TE cell toxicity. Thus, a variety of cells in the human thymus is susceptible to HIV infection, and infection with HIV results in a marked disruption of the thymic microenvironment leading to depletion of thymocytes and degeneration of TE cells.


Sign in / Sign up

Export Citation Format

Share Document