scholarly journals Effects of Visual Deprivation on Gait Dynamic Stability

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Marco Iosa ◽  
Augusto Fusco ◽  
Giovanni Morone ◽  
Stefano Paolucci

Vision can improve bipedal upright stability during standing and affect spatiotemporal parameters during walking. However, little is known about the effects of visual deprivation on gait dynamic stability. We have tested 28 subjects during walking under two different visual conditions, full vision (FV) and no vision (NV), measuring their upper body accelerations. Lower accelerations were found in NV for the reduced walking speed. However, the normalized accelerations were higher in the NV than in the FV condition, both in anteroposterior (1.05±0.21versus0.88±0.16,P=0.001) and laterolateral (0.99±0.26versus0.78±0.19,P<0.001) directions. Vision also affected the gait anteroposterior harmony (P=0.026) and, interacting with the environment, also the latero-lateral one (P=0.017). Directly (as main factor of the ANOVA) or indirectly (by means of significant interactions with other factors), vision affected all the measured parameters. In conclusion, participants showed an environment-dependent reduction of upper body stability and harmony when deprived by visual feedback.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ramon J. Boekesteijn ◽  
José M. H. Smolders ◽  
Vincent J. J. F. Busch ◽  
Alexander C. H. Geurts ◽  
Katrijn Smulders

Abstract Background Although it is well-established that osteoarthritis (OA) impairs daily-life gait, objective gait assessments are not part of routine clinical evaluation. Wearable inertial sensors provide an easily accessible and fast way to routinely evaluate gait quality in clinical settings. However, during these assessments, more complex and meaningful aspects of daily-life gait, including turning, dual-task performance, and upper body motion, are often overlooked. The aim of this study was therefore to investigate turning, dual-task performance, and upper body motion in individuals with knee or hip OA in addition to more commonly assessed spatiotemporal gait parameters using wearable sensors. Methods Gait was compared between individuals with unilateral knee (n = 25) or hip OA (n = 26) scheduled for joint replacement, and healthy controls (n = 27). For 2 min, participants walked back and forth along a 6-m trajectory making 180° turns, with and without a secondary cognitive task. Gait parameters were collected using 4 inertial measurement units on the feet and trunk. To test if dual-task gait, turning, and upper body motion had added value above spatiotemporal parameters, a factor analysis was conducted. Effect sizes were computed as standardized mean difference between OA groups and healthy controls to identify parameters from these gait domains that were sensitive to knee or hip OA. Results Four independent domains of gait were obtained: speed-spatial, speed-temporal, dual-task cost, and upper body motion. Turning parameters constituted a gait domain together with cadence. From the domains that were obtained, stride length (speed-spatial) and cadence (speed-temporal) had the strongest effect sizes for both knee and hip OA. Upper body motion (lumbar sagittal range of motion), showed a strong effect size when comparing hip OA with healthy controls. Parameters reflecting dual-task cost were not sensitive to knee or hip OA. Conclusions Besides more commonly reported spatiotemporal parameters, only upper body motion provided non-redundant and sensitive parameters representing gait adaptations in individuals with hip OA. Turning parameters were sensitive to knee and hip OA, but were not independent from speed-related gait parameters. Dual-task parameters had limited additional value for evaluating gait in knee and hip OA, although dual-task cost constituted a separate gait domain. Future steps should include testing responsiveness of these gait domains to interventions aiming to improve mobility.


2007 ◽  
Vol 23 (2) ◽  
pp. 93-102 ◽  
Author(s):  
Venkata K. Gade ◽  
Sara E. Wilson

Proprioception plays an important role in appropriate sensation of spine position, movement, and stability. Previous research has demonstrated that position sense error in the lumbar spine is increased in flexed postures. This study investigated the change in position sense as a function of altered trunk flexion and moment loading independently. Reposition sense of lumbar angle in 17 subjects was assessed. Subjects were trained to assume specified lumbar angles using visual feedback. The ability of the subjects to reproduce this curvature without feedback was then assessed. This procedure was repeated for different torso flexion and moment loading conditions. These measurements demonstrated that position sense error increased significantly with the trunk flexion (40%,p< .05) but did not increase with moment load (p= .13). This increased error with flexion suggests a loss in the ability to appropriately sense and therefore control lumbar posture in flexed tasks. This loss in proprioceptive sense could lead to more variable lifting coordination and a loss in dynamic stability that could increase low back injury risk. This research suggests that it is advisable to avoid work in flexed postures.


Author(s):  
Hyun Gu Kang ◽  
Jonathan B. Dingwell

Older adults commonly walk slower, which many believe helps improve their walking stability. However, they remain at increased risk of falls. We investigated how differences in age and walking speed independently affect dynamic stability during walking, and how age-related changes in leg strength and ROM affected this relationship. Eighteen active healthy older and 17 younger adults walked on a treadmill for 5 minutes each at each of 5 speeds (80–120% of preferred). Local divergence exponents and maximum Floquet multipliers (FM) were calculated to quantify each subject’s responses to small inherent perturbations during walking. These older adults exhibited the same preferred walking speeds as the younger subjects (p = 0.860). However, these older adults still exhibited greater local divergence exponents (p&lt;0.0001) and higher maximum FM (p&lt;0.007) than young adults at all walking speeds. These older adults remained more unstable (p&lt;0.04) even after adjusting for declines in both strength and ROM. In both age groups, local divergence exponents decreased at slower speeds and increased at faster speeds (p&lt;0.0001). Maximum FM showed similar changes with speed (p&lt;0.02). The older adults in this study were healthy enough to walk at normal speeds. However, these adults were still more unstable than the young adults, independent of walking speed. This greater instability was not explained by loss of leg strength and ROM. Slower speeds led to decreased instability in both groups.


2016 ◽  
Vol 115 (2) ◽  
pp. 907-914 ◽  
Author(s):  
L. Eduardo Cofré Lizama ◽  
Mirjam Pijnappels ◽  
N. Peter Reeves ◽  
Sabine M. P. Verschueren ◽  
Jaap H. van Dieën

Explicit visual feedback on postural sway is often used in balance assessment and training. However, up-weighting of visual information may mask impairments of other sensory systems. We therefore aimed to determine whether the effects of somatosensory, vestibular, and proprioceptive manipulations on mediolateral balance are reduced by explicit visual feedback on mediolateral sway of the body center of mass and by the presence of visual information. We manipulated sensory inputs of the somatosensory system by transcutaneous electric nerve stimulation on the feet soles (TENS) of the vestibular system by galvanic vestibular stimulation (GVS) and of the proprioceptive system by muscle-tendon vibration (VMS) of hip abductors. The effects of these manipulations on mediolateral sway were compared with a control condition without manipulation under three visual conditions: explicit feedback of sway of the body center of mass (FB), eyes open (EO), and eyes closed (EC). Mediolateral sway was quantified as the sum of energies in the power spectrum and as the energy at the dominant frequencies in each of the manipulation signals. Repeated-measures ANOVAs were used to test effects of each of the sensory manipulations, of visual conditions and their interaction. Overall, sensory manipulations increased body sway compared with the control conditions. Absence of normal visual information had no effect on sway, while explicit feedback reduced sway. Furthermore, interactions of visual information and sensory manipulation were found at specific dominant frequencies for GVS and VMS, with explicit feedback reducing the effects of the manipulations but not effacing these.


Perception ◽  
1975 ◽  
Vol 4 (4) ◽  
pp. 363-371 ◽  
Author(s):  
Susanna Millar

Figure drawings by 30 blind and 30 sighted children, tested under blindfold and visual conditions, were compared on positioning and drawing scores. Results showed that the majority of the blind, unlike the sighted made positioning errors, and were unaware of the correct placement rule. The older blind did not differ from the sighted on figure drawing, but the younger blind scored significantly worse. Blindfolded compared to visual conditions produced decrements mainly on cohesion and amount of detail by the sighted. The findings suggest that drawing depends on the acquisition of translation rules for which prior visual experience is a facilitating but not a necessary condition. The absence of visual feedback during drawing seems to have detrimental effects mainly on the articulation of drawing.


2017 ◽  
Vol 54 ◽  
pp. 304-310 ◽  
Author(s):  
Jacqueline Romkes ◽  
Katrin Bracht-Schweizer

Sign in / Sign up

Export Citation Format

Share Document