scholarly journals Heat Shock Proteins and Neurodegenerative Disorders

2008 ◽  
Vol 8 ◽  
pp. 270-274 ◽  
Author(s):  
Eliza Ting-Li Soo ◽  
Yee-Kong Ng ◽  
Boon-Huat Bay ◽  
George Wai-Cheong Yip

Heat shock proteins (HSPs) are evolutionarily conserved molecules and play important roles in fundamental cellular processes. They serve as molecular chaperones and hence provide a protective function in ensuring cell survival and repair of cellular damage after a stressful stimulus. This paper summarizes the current knowledge about the different roles of HSPs in aging and disease, focusing on the neurodegenerative disorders of Alzheimer's disease, Parkinson's disease, Huntington's disease, and prion disease.

2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Khalid Mahmood ◽  
Saima Jadoon ◽  
Qaisar Mahmood ◽  
Muhammad Irshad ◽  
Jamshaid Hussain

Heat shock proteins show remarkable variations in their expression levels under a variety of toxic conditions. A research span expanded over five decades has revealed their molecular characterization, gene regulation, expression patterns, vast similarity in diverse groups, and broad range of functional capabilities. Their functions include protection and tolerance against cytotoxic conditions through their molecular chaperoning activity, maintaining cytoskeleton stability, and assisting in cell signaling. However, their role as biomarkers for monitoring the environmental risk assessment is controversial due to a number of conflicting, validating, and nonvalidating reports. The current knowledge regarding the interpretation of HSPs expression levels has been discussed in the present review. The candidature of heat shock proteins as biomarkers of toxicity is thus far unreliable due to synergistic effects of toxicants and other environmental factors. The adoption of heat shock proteins as “suit of biomarkers in a set of organisms” requires further investigation.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jakub Szyller ◽  
Iwona Bil-Lula

Heat shock proteins (HSPs) are molecular chaperones produced in response to oxidative stress (OS). These proteins are involved in the folding of newly synthesized proteins and refolding of damaged or misfolded proteins. Recent studies have been focused on the regulatory role of HSPs in OS and ischemia/reperfusion injury (I/R) where reactive oxygen species (ROS) play a major role. ROS perform many functions, including cell signaling. Unfortunately, they are also the cause of pathological processes leading to various diseases. Biological pathways such as p38 MAPK, HSP70 and Akt/GSK-3β/eNOS, HSP70, JAK2/STAT3 or PI3K/Akt/HSP70, and HSF1/Nrf2-Keap1 are considered in the relationship between HSP and OS. New pathophysiological mechanisms involving ROS are being discovered and described the protein network of HSP interactions. Understanding of the mechanisms involved, e.g., in I/R, is important to the development of treatment methods. HSPs are multifunctional proteins because they closely interact with the antioxidant and the nitric oxide generation systems, such as HSP70/HSP90/NOS. A deficiency or excess of antioxidants modulates the activation of HSF and subsequent HSP biosynthesis. It is well known that HSPs are involved in the regulation of several redox processes and play an important role in protein-protein interactions. The latest research focuses on determining the role of HSPs in OS, their antioxidant activity, and the possibility of using HSPs in the treatment of I/R consequences. Physical exercises are important in patients with cardiovascular diseases, as they affect the expression of HSPs and the development of OS.


2004 ◽  
Vol 24 (7) ◽  
pp. 826-828 ◽  
Author(s):  
Howard M. Prentice ◽  
Sarah L. Milton ◽  
Daniela Scheurle ◽  
Peter L. Lutz

Because heat shock proteins (HSPs) have an important protective function against ischemia/anoxia in mammalian brain, the authors investigated the expression of Hsp72 and Hsc73 in the anoxia-surviving turtle brain. Unlike the mammalian brain, high levels of Hsp72 were found in the normoxic turtle brain. Hsp72 levels were significantly increased by 4 hours of anoxia, remained constant until 8 hours, and then decreased to baseline at 12 hours. By contrast, Hsc73 was progressively increased throughout 12 hours of anoxia. This differential expression suggests different protective roles: Hsp72 in the initial downregulatory transition phase, and Hsc73 in maintaining neural network integrity during the long-term hypometabolic phase.


2016 ◽  
Vol 4 (3) ◽  
pp. 114-117 ◽  
Author(s):  
Shobhana Nayak Rao

AbstractHeat Shock Proteins (HSP) belong to the family of intracellular proteins that are constitutively expressed and are upregulated by various stressors including heat, oxidative and chemical stress. HSP helps in reparative processes, including the refolding of damaged proteins and the removal of irreparably damaged proteins that would initiate cellular death or apoptosis. A growing body of evidence has expanded the role of HSP and defined their role in diseases such as neurodegenerative disorders, cancer, ischemic heart disease and kidney diseases. The protective role of HSP in ischemic renal injury has been described and HSP impairment has been noted in other forms of kidney injuries including post-transplant situation. Further research into the role of HSP in prevention of kidney injury is crucial if translation from the laboratory to patient bedside has to occur. This article aims to be a review of heat shock protein, and its relevance to kidney diseases.


2019 ◽  
Vol 24 (6) ◽  
pp. 1027-1044 ◽  
Author(s):  
Dorota Scieglinska ◽  
Zdzisław Krawczyk ◽  
Damian Robert Sojka ◽  
Agnieszka Gogler-Pigłowska

AbstractHeat shock proteins (HSPs), a large group of highly evolutionary conserved proteins, are considered to be main elements of the cellular proteoprotection system. HSPs are encoded by genes activated during the exposure of cells to proteotoxic factors, as well as by genes that are expressed constitutively under physiological conditions. HSPs, having properties of molecular chaperones, are involved in controlling/modulation of multiple cellular and physiological processes. In the presented review, we summarize the current knowledge on HSPs in the biology of epidermis, the outer skin layer composed of stratified squamous epithelium. This tissue has a vital barrier function preventing from dehydratation due to passive diffusion of water out of the skin, and protecting from infection and other environmental insults. We focused on HSPB1 (HSP27), HSPA1 (HSP70), HSPA2, and HSPC (HSP90), because only these HSPs have been studied in the context of physiology and pathophysiology of the epidermis. The analysis of literature data shows that HSPB1 plays a role in the regulation of final steps of keratinization; HSPA1 is involved in the cytoprotection, HSPA2 contributes to the early steps of keratinocyte differentiation, while HSPC is essential in the re-epithelialization process. Since HSPs have diverse functions in various types of somatic tissues, in spite of multiple investigations, open questions still remain about detailed roles of a particular HSP isoform in the biology of epidermal keratinocytes.


2020 ◽  
Author(s):  
Pragya Prasanna ◽  
Arun Upadhyay

Leishmania, the causative agent of leishmaniasis, is an intracellular pathogen that thrives in the insect gut and mammalian macrophages to complete its life cycle. Apart from temperature difference (26oC to 37oC), it encounters several harsh conditions, including oxidative stress, inflammatory reactions, and low pH. Heat shock proteins (HSPs) play essential roles in cell survival by strategically reprogramming cellular processes and signaling pathways. HSPs assist cells in multiple functions, including differentiation, adaptation, virulence, and persistence in the host cell. Due to cyclical epidemiological patterns, limited chemotherapeutic options, drug resistance, and the absence of a vaccine, control of leishmaniasis remain a far-fetched dream. The essential roles of HSPs in parasitic differentiation and virulence and increased expression in drug-resistant strains highlight their importance in combating the disease. In this review, we highlighted the diverse physiological importance of HSPs present in Leishmania, emphasizing their significance in disease pathogenesis. Subsequently, we assessed the potential of HSPs as a chemotherapeutic target and underlined the challenges associated with it. Furthermore, we have summarized a few ongoing drug discovery initiatives that need to be explored further to develop clinically successful chemotherapeutic agents in the future.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Panchanan Maiti ◽  
Jayeeta Manna ◽  
Shobi Veleri ◽  
Sally Frautschy

The intra- and extracellular accumulation of misfolded and aggregated amyloid proteins is a common feature in several neurodegenerative diseases, which is thought to play a major role in disease severity and progression. The principal machineries maintaining proteostasis are the ubiquitin proteasomal and lysosomal autophagy systems, where heat shock proteins play a crucial role. Many protein aggregates are degraded by the lysosomes, depending on aggregate size, peptide sequence, and degree of misfolding, while others are selectively tagged for removal by heat shock proteins and degraded by either the proteasome or phagosomes. These systems are compromised in different neurodegenerative diseases. Therefore, developing novel targets and classes of therapeutic drugs, which can reduce aggregates and maintain proteostasis in the brains of neurodegenerative models, is vital. Natural products that can modulate heat shock proteins/proteosomal pathway are considered promising for treating neurodegenerative diseases. Here we discuss the current knowledge on the role of HSPs in protein misfolding diseases and knowledge gained from animal models of Alzheimer’s disease, tauopathies, and Huntington’s diseases. Further, we discuss the emerging treatment regimens for these diseases using natural products, like curcumin, which can augment expression or function of heat shock proteins in the cell.


2002 ◽  
Vol 92 (5) ◽  
pp. 2177-2186 ◽  
Author(s):  
Kevin C. Kregel

Cells from virtually all organisms respond to a variety of stresses by the rapid synthesis of a highly conserved set of polypeptides termed heat shock proteins (HSPs). The precise functions of HSPs are unknown, but there is considerable evidence that these stress proteins are essential for survival at both normal and elevated temperatures. HSPs also appear to play a critical role in the development of thermotolerance and protection from cellular damage associated with stresses such as ischemia, cytokines, and energy depletion. These observations suggest that HSPs play an important role in both normal cellular homeostasis and the stress response. This mini-review examines recent evidence and hypotheses suggesting that the HSPs may be important modifying factors in cellular responses to a variety of physiologically relevant conditions such as hyperthermia, exercise, oxidative stress, metabolic challenge, and aging.


Sign in / Sign up

Export Citation Format

Share Document