scholarly journals Zipper plot: visualizing transcriptional activity of genomic regions

2016 ◽  
Author(s):  
Francisco Avila Cobos ◽  
Jasper Anckaert ◽  
Pieter-Jan Volders ◽  
Dries Rombaut ◽  
Jo Vandesompele ◽  
...  

AbstractSummaryReconstructing transcript models from RNA-sequencing (RNA-seq) data and establishing these as independent transcriptional units can be a challenging task. The Zipper plot is an application that enables users to interrogate putative transcription start sites (TSSs) in relation to various features that are indicative for transcriptional activity. These features are obtained from publicly available datasets including CAGE-sequencing (CAGE-seq), ChIP-sequencing (ChIP-seq) for histone marks and DNasesequencing (DNase-seq). The Zipper plot application requires three input fields (chromosome, genomic coordinate (hg19) of the TSS and strand) and generates a report that includes a detailed summary table, a Zipper plot and several statistics derived from this plot.Availability and ImplementationThe Zipper plot is implemented using the statistical programming language R and is freely available at http://[email protected]; [email protected]; [email protected] informationSupplementary Methods available online.

2020 ◽  
Vol 36 (11) ◽  
pp. 3605-3606
Author(s):  
Pumin Li ◽  
Qi Xu ◽  
Xu Hua ◽  
Zhongwei Xie ◽  
Jie Li ◽  
...  

Abstract Summary The R/Bioconductor package primirTSS is a fast and convenient tool that allows implementation of the analytical method to identify transcription start sites of microRNAs by integrating ChIP-seq data of H3K4me3 and Pol II. It further ensures the precision by employing the conservation score and sequence features. The tool showed a good performance when using H3K4me3 or Pol II Chip-seq data alone as input, which brings convenience to applications where multiple datasets are hard to acquire. This flexible package is provided with both R-programming interfaces as well as graphical web interfaces. Availability and implementation primirTSS is available at: http://bioconductor.org/packages/primirTSS. The documentation of the package including an accompanying tutorial was deposited at: https://bioconductor.org/packages/release/bioc/vignettes/primirTSS/inst/doc/primirTSS.html. Contact [email protected] Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Author(s):  
Edwige Belotti ◽  
Nicolas Lacoste ◽  
Thomas Simonet ◽  
Christophe Papin ◽  
Kiran Padmanabhan ◽  
...  

ABSTRACTThe histone variant H2A.Z is enriched in nucleosomes surrounding the transcription start site of active promoters, suggesting that it might be implicated in transcription. It is also required during mitosis. However, evidences obtained so far mainly rely on correlative evidences obtained in actively dividing cells. We have defined a paradigm in which cell cycle cannot interfere with H2A.Z transcriptional studies by developing an in vivo systems to invalidate H2A.Z in terminally differentiated post-mitotic muscle cells to dissociate its role during transcription from its role during mitosis. ChIP-seq, RNA-seq and ATAC-seq experiments performed on H2A.Z KO post-mitotic muscle cells show that this histone variant is neither required to maintain nor to activate transcription. Altogether, this study provides in vivo evidence that in the absence of mitosis H2A.Z is dispensable for transcription and that the enrichment of H2A.Z on active promoters is rather a marker than an actor of transcriptional activity.


2021 ◽  
Author(s):  
Juexiao Zhou ◽  
bin zhang ◽  
Haoyang Li ◽  
Longxi Zhou ◽  
Zhongxiao Li ◽  
...  

Abstract The accurate annotation of transcription start sites (TSSs) and their usage is critical for the mechanistic understanding of gene regulation under different biological contexts. To fulfil this, on one hand, specific high-throughput experimental technologies have been developed to capture TSSs in a genome-wide manner. On the other hand, various computational tools have also been developed for in silico prediction of TSSs solely based on genomic sequences. Most of these computational tools cast the problem as a binary classification task on a balanced dataset and thus result in drastic false positive predictions when applied on the genome-scale. To address these issues, we present DeeReCT-TSS, a deep-learning-based method that is capable of TSSs identification across the whole genome based on both DNA sequences and conventional RNA-seq data. We show that by effectively incorporating these two sources of information, DeeReCT-TSS significantly outperforms other solely sequence-based methods on the precise annotation of TSSs used in different cell types. Furthermore, we develop a meta-learning-based extension for simultaneous transcription start site (TSS) annotation on 10 cell types, which enables the identification of cell-type-specific TSS. Finally, we demonstrate the high precision of DeeReCT-TSS on two independent datasets from the ENCODE project by correlating our predicted TSSs with experimentally defined TSS chromatin states. Our application, pre-trained models and data are available at https://github.com/JoshuaChou2018/DeeReCT-TSS_release.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Simon Bourdareau ◽  
Leila Tirichine ◽  
Bérangère Lombard ◽  
Damarys Loew ◽  
Delphine Scornet ◽  
...  

Abstract Background Brown algae evolved complex multicellularity independently of the animal and land plant lineages and are the third most developmentally complex phylogenetic group on the planet. An understanding of developmental processes in this group is expected to provide important insights into the evolutionary events necessary for the emergence of complex multicellularity. Here, we focus on mechanisms of epigenetic regulation involving post-translational modifications of histone proteins. Results A total of 47 histone post-translational modifications are identified, including a novel mark H2AZR38me1, but Ectocarpus lacks both H3K27me3 and the major polycomb complexes. ChIP-seq identifies modifications associated with transcription start sites and gene bodies of active genes and with transposons. H3K79me2 exhibits an unusual pattern, often marking large genomic regions spanning several genes. Transcription start sites of closely spaced, divergently transcribed gene pairs share a common nucleosome-depleted region and exhibit shared histone modification peaks. Overall, patterns of histone modifications are stable through the life cycle. Analysis of histone modifications at generation-biased genes identifies a correlation between the presence of specific chromatin marks and the level of gene expression. Conclusions The overview of histone post-translational modifications in the brown alga presented here will provide a foundation for future studies aimed at understanding the role of chromatin modifications in the regulation of brown algal genomes.


2017 ◽  
Author(s):  
Charles Cole ◽  
Ashley Byrne ◽  
Anna E. Beaudin ◽  
E. Camilla Forsberg ◽  
Christopher Vollmers

AbstractRNA-seq is a powerful technique to investigate and quantify entire transcriptomes. Recent advances in the field have made it possible to explore the transcriptomes of single cells. However, most widely used RNA-seq protocols fail to provide crucial information regarding transcription start sites. Here we present a protocol, Tn5Prime, that takes advantage of the Tn5 transposase based Smartseq2 protocol to create RNA-seq libraries that capture the 5’ end of transcripts. The Tn5Prime method dramatically streamlines the 5’ capture process and is both cost effective and reliable. By applying Tn5Prime to bulk RNA and single cell samples we were able to define transcription start sites as well as quantify transcriptomes at high accuracy and reproducibility. Additionally, similar to 3’ end based high-throughput methods like Drop-Seq and 10X Genomics Chromium, the 5’ capture Tn5Prime method allows the introduction of cellular identifiers during reverse transcription, simplifying the analysis of large numbers of single cells. In contrast to 3’ end based methods, Tn5Prime also enables the assembly of the variable 5’ ends of antibody sequences present in single B-cell data. Therefore, Tn5Prime presents a robust tool for both basic and applied research into the adaptive immune system and beyond.


2016 ◽  
Author(s):  
Elena D. Stavrovskaya ◽  
Tejasvi Niranjan ◽  
Elana J. Fertig ◽  
Sarah J. Wheelan ◽  
Alexander Favorov ◽  
...  

AbstractMotivationGenomics features with similar genomewide distributions are generally hypothesized to be functionally related, for example, co-localization of histones and transcription start sites indicate chromatin regulation of transcription factor activity. Therefore, statistical algorithms to perform spatial, genomewide correlation among genomic features are required.ResultsHere, we propose a method, StereoGene, that rapidly estimates genomewide correlation among pairs of genomic features. These features may represent high throughput data mapped to reference genome or sets of genomic annotations in that reference genome. StereoGene enables correlation of continuous data directly, avoiding the data binarization and subsequent data loss. Correlations are computed among neighboring genomic positions using kernel correlation. Representing the correlation as a function of the genome position, StereoGene outputs the local correlation track as part of the analysis. StereoGene also accounts for confounders such as input DNA by partial correlation. We apply our method to numerous comparisons of ChIP-Seq datasets from the Human Epigenome Atlas and FANTOM CAGE to demonstrate its wide applicability. We observe the changes in the correlation between epigenomic features across developmental trajectories of several tissue types consistent with known biology, and find a novel spatial correlation of CAGE clusters with donor splice sites and with poly(A) sites. These analyses provide examples for the broad applicability of StereoGene for regulatory genomics.AvailabilityThe StereoGene C++ source code, program documentation, Galaxy integration scripts and examples are available from the project homepage http://stereogene.bioinf.fbb.msu.ru/[email protected] informationSupplementary data are available online.


2021 ◽  
Author(s):  
Roman Hillje ◽  
Lucilla Luzi ◽  
Stefano Amatori ◽  
Mirco Fanelli ◽  
Pier Giuseppe Pelicci ◽  
...  

Abstract To disclose the epigenetic drift of time passing, we determined the genome-wide distributions of mono- and tri-methylated lysine 4 and acetylated and tri-methylated lysine 27 of histone H3 in the livers of healthy 3, 6 and 12 months old C57BL/6 mice. The comparison of different age profiles of histone H3 marks revealed global redistribution of histone H3 modifications with time, in particular in intergenic regions and near transcription start sites, as well as altered correlation between the profiles of different histone modifications. Moreover, feeding mice with caloric restriction diet, a treatment known to retard aging, preserved younger state of histone H3 in these genomic regions.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2717-2717 ◽  
Author(s):  
Martin G. Klatt ◽  
Sung S. Mun ◽  
Nicholas D. Socci ◽  
Tatyana Korontsvit ◽  
Tao Dao ◽  
...  

Abstract Acute myeloid leukemia (AML) is an aggressive hematological malignancy with a 5-year overall survival rate of less than 30% which causes over 10,000 deaths per year in the United States. Treatment options for this disease increasingly include epigenetic drugs, such as hypomethylating agents (e.g. decitabine) or histone deacetylase (HDAC) inhibitors (e.g. pracinostat) which can function via direct cytotoxic mechanisms and also through altered differentiation of AML blasts; immunomodulatory effects like reactivation and presentation of cancer testis antigens in context of human leukocyte antigen (HLA) complexes have been reported as well, which may result in clearance of cells via the adaptive immune system. However, the landscape of immunogenic T cell epitopes induced by these drugs might be even broader than reported since standard analyses only consider exonic protein sequences and do not take into account typically untranslated genomic regions. Recently, it has been shown that single and combination treatment of decitabine and pracinostat can induce cryptic transcription start sites in generally epigenetically repressed solitary long-terminal repeats (LTRs) of the LTR12C family which give rise to novel mRNAs and resulting protein variants. We hypothesized that the intronic parts of these gene products might provide a source of cryptic T cell epitopes with high immunogenic potential, which are induced through epigenetic drug treatment. To test this hypothesis, we treated 5 different AML cell lines (HL-60, U937, OCI-AML02, MOLM13, AML14) with (1) DMSO, (2) 500 nM decitabine or (3) a combination of 500 nM decitabine and 100 nM pracinostat for 72 hours to induce transcription of non-annotated transcription start sites. Subsequently, HLA class I complexes were immunopurified and peptides presented by these complexes isolated and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The activation of silenced genes by epigenetic drug treatment with either decitabine alone or the combination treatment yielded increases of about two-fold in the identified unique HLA ligands. This increase in peptide identifications also led to improved detection of cancer testis antigen-derived epitopes, as has been reported before. Intriguingly, by adding LTR12C derived sequences stretching from the published GATA2 specific binding site until the next genomic exon to the peptide search analyses we were able to identify several cryptic peptides from 4 out of 5 AML cell lines derived from these usually untranscribed genomic regions. The identifications were exclusively dependent on previous treatment with either decitabine alone or in combination with pracinostat. Though the immunogenicity of these HLA ligands has not been determined yet, we assume that due to their genetically repressed state in untreated cells, these new peptide sequences represent a new class of neoepitopes, with potential to be novel targets of existing T cells within patients or after augmentation by other immunotherapies. In summary, we demonstrated for the first time the induced presentation of epitopes from normally untranscribed LTR12C regions through epigenetic drug treatment and therefore provide a previously undescribed source of potential targets for immunotherapy in AML. Disclosures Scheinberg: Eureka: Consultancy; Ensyce: Consultancy.


Epigenomics ◽  
2021 ◽  
Author(s):  
Marika Groleau ◽  
Frédérique White ◽  
Andres Cardenas ◽  
Patrice Perron ◽  
Marie-France Hivert ◽  
...  

Aim: The placenta undergoes DNA methylation (DNAm) programming that is unique compared with all other fetal tissues. We aim to decipher some of the physiologic roles of the placenta by comparing its DNAm profile with that of another fetal tissue. Materials & methods: We performed a comparative analysis of genome-wide DNAm of 444 placentas paired with cord blood samples collected at birth. Gene ontology term analyses were conducted on the resulting differentially methylated regions. Results: Genomic regions upstream of transcription start sites showing lower DNAm in the placenta were enriched with terms related to miRNA functions and genes encoding G protein-coupled receptors. Conclusion: These results highlight genomic regions that are differentially methylated in the placenta in contrast to fetal blood.


Sign in / Sign up

Export Citation Format

Share Document