scholarly journals Geometric Potentials from Deep Learning Improve Prediction of CDR H3 Loop Structures

Author(s):  
Jeffrey A. Ruffolo ◽  
Carlos Guerra ◽  
Sai Pooja Mahajan ◽  
Jeremias Sulam ◽  
Jeffrey J. Gray

AbstractAntibody structure is largely conserved, except for a complementarity-determining region featuring six variable loops. Five of these loops adopt canonical folds which can typically be predicted with existing methods, while the remaining loop (CDR H3) remains a challenge due to its highly diverse set of observed conformations. In recent years, deep neural networks have proven to be effective at capturing the complex patterns of protein structure. This work proposes DeepH3, a deep residual neural network that learns to predict inter-residue distances and orientations from antibody heavy and light chain sequence. The output of DeepH3 is a set of probability distributions over distances and orientation angles between pairs of residues. These distributions are converted to geometric potentials and used to discriminate between decoy structures produced by RosettaAntibody. When evaluated on the Rosetta Antibody Benchmark dataset of 49 targets, DeepH3-predicted potentials identified better, same, and worse structures (measured by root-mean-squared distance [RMSD] from the experimental CDR H3 loop structure) than the standard Rosetta energy function for 30, 13, and 6 targets, respectively, and improved the average RMSD of predictions by 21.3% (0.48 Å). Analysis of individual geometric potentials revealed that inter-residue orientations were more effective than inter-residue distances for discriminating near-native CDR H3 loop structures.

2020 ◽  
Vol 36 (Supplement_1) ◽  
pp. i268-i275 ◽  
Author(s):  
Jeffrey A Ruffolo ◽  
Carlos Guerra ◽  
Sai Pooja Mahajan ◽  
Jeremias Sulam ◽  
Jeffrey J Gray

Abstract Motivation Antibody structure is largely conserved, except for a complementarity-determining region featuring six variable loops. Five of these loops adopt canonical folds which can typically be predicted with existing methods, while the remaining loop (CDR H3) remains a challenge due to its highly diverse set of observed conformations. In recent years, deep neural networks have proven to be effective at capturing the complex patterns of protein structure. This work proposes DeepH3, a deep residual neural network that learns to predict inter-residue distances and orientations from antibody heavy and light chain sequence. The output of DeepH3 is a set of probability distributions over distances and orientation angles between pairs of residues. These distributions are converted to geometric potentials and used to discriminate between decoy structures produced by RosettaAntibody and predict new CDR H3 loop structures de novo. Results When evaluated on the Rosetta antibody benchmark dataset of 49 targets, DeepH3-predicted potentials identified better, same and worse structures [measured by root-mean-squared distance (RMSD) from the experimental CDR H3 loop structure] than the standard Rosetta energy function for 33, 6 and 10 targets, respectively, and improved the average RMSD of predictions by 32.1% (1.4 Å). Analysis of individual geometric potentials revealed that inter-residue orientations were more effective than inter-residue distances for discriminating near-native CDR H3 loops. When applied to de novo prediction of CDR H3 loop structures, DeepH3 achieves an average RMSD of 2.2 ± 1.1 Å on the Rosetta antibody benchmark. Availability and Implementation DeepH3 source code and pre-trained model parameters are freely available at https://github.com/Graylab/deepH3-distances-orientations. Supplementary information Supplementary data are available at Bioinformatics online.


Entropy ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. 1365
Author(s):  
Bogdan Muşat ◽  
Răzvan Andonie

Convolutional neural networks utilize a hierarchy of neural network layers. The statistical aspects of information concentration in successive layers can bring an insight into the feature abstraction process. We analyze the saliency maps of these layers from the perspective of semiotics, also known as the study of signs and sign-using behavior. In computational semiotics, this aggregation operation (known as superization) is accompanied by a decrease of spatial entropy: signs are aggregated into supersign. Using spatial entropy, we compute the information content of the saliency maps and study the superization processes which take place between successive layers of the network. In our experiments, we visualize the superization process and show how the obtained knowledge can be used to explain the neural decision model. In addition, we attempt to optimize the architecture of the neural model employing a semiotic greedy technique. To the extent of our knowledge, this is the first application of computational semiotics in the analysis and interpretation of deep neural networks.


2020 ◽  
Author(s):  
Albahli Saleh ◽  
Ali Alkhalifah

BACKGROUND To diagnose cardiothoracic diseases, a chest x-ray (CXR) is examined by a radiologist. As more people get affected, doctors are becoming scarce especially in developing countries. However, with the advent of image processing tools, the task of diagnosing these cardiothoracic diseases has seen great progress. A lot of researchers have put in work to see how the problems associated with medical images can be mitigated by using neural networks. OBJECTIVE Previous works used state-of-the-art techniques and got effective results with one or two cardiothoracic diseases but could lead to misclassification. In our work, we adopted GANs to synthesize the chest radiograph (CXR) to augment the training set on multiple cardiothoracic diseases to efficiently diagnose the chest diseases in different classes as shown in Figure 1. In this regard, our major contributions are classifying various cardiothoracic diseases to detect a specific chest disease based on CXR, use the advantage of GANs to overcome the shortages of small training datasets, address the problem of imbalanced data; and implementing optimal deep neural network architecture with different hyper-parameters to improve the model with the best accuracy. METHODS For this research, we are not building a model from scratch due to computational restraints as they require very high-end computers. Rather, we use a Convolutional Neural Network (CNN) as a class of deep neural networks to propose a generative adversarial network (GAN) -based model to generate synthetic data for training the data as the amount of the data is limited. We will use pre-trained models which are models that were trained on a large benchmark dataset to solve a problem similar to the one we want to solve. For example, the ResNet-152 model we used was initially trained on the ImageNet dataset. RESULTS After successful training and validation of the models we developed, ResNet-152 with image augmentation proved to be the best model for the automatic detection of cardiothoracic disease. However, one of the main problems associated with radiographic deep learning projects and research is the scarcity and unavailability of enough datasets which is a key component of all deep learning models as they require a lot of data for training. This is the reason why some of our models had image augmentation to increase the number of images without duplication. As more data are collected in the field of chest radiology, the models could be retrained to improve the accuracies of the models as deep learning models improve with more data. CONCLUSIONS This research employs the advantages of computer vision and medical image analysis to develop an automated model that has the clinical potential for early detection of the disease. Using deep learning models, the research aims to evaluate the effectiveness and accuracy of different convolutional neural network models in the automatic diagnosis of cardiothoracic diseases from x-ray images compared to diagnosis by experts in the medical community.


mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Artur Yakimovich ◽  
Moona Huttunen ◽  
Jerzy Samolej ◽  
Barbara Clough ◽  
Nagisa Yoshida ◽  
...  

ABSTRACT The use of deep neural networks (DNNs) for analysis of complex biomedical images shows great promise but is hampered by a lack of large verified data sets for rapid network evolution. Here, we present a novel strategy, termed “mimicry embedding,” for rapid application of neural network architecture-based analysis of pathogen imaging data sets. Embedding of a novel host-pathogen data set, such that it mimics a verified data set, enables efficient deep learning using high expressive capacity architectures and seamless architecture switching. We applied this strategy across various microbiological phenotypes, from superresolved viruses to in vitro and in vivo parasitic infections. We demonstrate that mimicry embedding enables efficient and accurate analysis of two- and three-dimensional microscopy data sets. The results suggest that transfer learning from pretrained network data may be a powerful general strategy for analysis of heterogeneous pathogen fluorescence imaging data sets. IMPORTANCE In biology, the use of deep neural networks (DNNs) for analysis of pathogen infection is hampered by a lack of large verified data sets needed for rapid network evolution. Artificial neural networks detect handwritten digits with high precision thanks to large data sets, such as MNIST, that allow nearly unlimited training. Here, we developed a novel strategy we call mimicry embedding, which allows artificial intelligence (AI)-based analysis of variable pathogen-host data sets. We show that deep learning can be used to detect and classify single pathogens based on small differences.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Tianyu Wang ◽  
Shi-Yuan Ma ◽  
Logan G. Wright ◽  
Tatsuhiro Onodera ◽  
Brian C. Richard ◽  
...  

AbstractDeep learning has become a widespread tool in both science and industry. However, continued progress is hampered by the rapid growth in energy costs of ever-larger deep neural networks. Optical neural networks provide a potential means to solve the energy-cost problem faced by deep learning. Here, we experimentally demonstrate an optical neural network based on optical dot products that achieves 99% accuracy on handwritten-digit classification using ~3.1 detected photons per weight multiplication and ~90% accuracy using ~0.66 photons (~2.5 × 10−19 J of optical energy) per weight multiplication. The fundamental principle enabling our sub-photon-per-multiplication demonstration—noise reduction from the accumulation of scalar multiplications in dot-product sums—is applicable to many different optical-neural-network architectures. Our work shows that optical neural networks can achieve accurate results using extremely low optical energies.


2021 ◽  
Vol 118 (43) ◽  
pp. e2103091118
Author(s):  
Cong Fang ◽  
Hangfeng He ◽  
Qi Long ◽  
Weijie J. Su

In this paper, we introduce the Layer-Peeled Model, a nonconvex, yet analytically tractable, optimization program, in a quest to better understand deep neural networks that are trained for a sufficiently long time. As the name suggests, this model is derived by isolating the topmost layer from the remainder of the neural network, followed by imposing certain constraints separately on the two parts of the network. We demonstrate that the Layer-Peeled Model, albeit simple, inherits many characteristics of well-trained neural networks, thereby offering an effective tool for explaining and predicting common empirical patterns of deep-learning training. First, when working on class-balanced datasets, we prove that any solution to this model forms a simplex equiangular tight frame, which, in part, explains the recently discovered phenomenon of neural collapse [V. Papyan, X. Y. Han, D. L. Donoho, Proc. Natl. Acad. Sci. U.S.A. 117, 24652–24663 (2020)]. More importantly, when moving to the imbalanced case, our analysis of the Layer-Peeled Model reveals a hitherto-unknown phenomenon that we term Minority Collapse, which fundamentally limits the performance of deep-learning models on the minority classes. In addition, we use the Layer-Peeled Model to gain insights into how to mitigate Minority Collapse. Interestingly, this phenomenon is first predicted by the Layer-Peeled Model before being confirmed by our computational experiments.


Author(s):  
Dong-Dong Chen ◽  
Wei Wang ◽  
Wei Gao ◽  
Zhi-Hua Zhou

Deep neural networks have witnessed great successes in various real applications, but it requires a large number of labeled data for training. In this paper, we propose tri-net, a deep neural network which is able to use massive unlabeled data to help learning with limited labeled data. We consider model initialization, diversity augmentation and pseudo-label editing simultaneously. In our work, we utilize output smearing to initialize modules, use fine-tuning on labeled data to augment diversity and eliminate unstable pseudo-labels to alleviate the influence of suspicious pseudo-labeled data. Experiments show that our method achieves the best performance in comparison with state-of-the-art semi-supervised deep learning methods. In particular, it achieves 8.30% error rate on CIFAR-10 by using only 4000 labeled examples.


Author(s):  
P.V.G.D. Prasad Reddy

Age-Related Macular Degeneration (ARMD) is a medical situation resulting in blurred or no vision in the middle of the eye view. Though this disease doesn’t make the person completely blind, it makes it very difficult for the person to perform day to day activities like reading, driving, recognizing people etc. This paper aims to detect ARMD though Optical Coherence Tomography (OCT) scans where the drusen in the macula is detected and identify the infected. The images are first passed though Directional Total Variation (DTV) Denoising followed by Active contour algorithm to mark the boundaries of the layers in macula. In deep learning, a convolutional neural network is a class of deep neural networks, most commonly applied to analyzing visual imagery. Then these images categorized as healthy and infected using Convolution Neural Network. Different CNN variant algorithms like Alexnet, VggNet and GoogleNet have been compared in the experiments and the results obtained are better compared to traditional methods.


Author(s):  
Nina Narodytska

Understanding properties of deep neural networks is an important challenge in deep learning. Deep learning networks are among the most successful artificial intelligence technologies that is making impact in a variety of practical applications. However, many concerns were raised about `magical' power of these networks. It is disturbing that we are really lacking of understanding of the decision making process behind this technology. Therefore, a natural question is whether we can trust decisions that neural networks make. One way to address this issue is to define properties that we want a neural network to satisfy. Verifying whether a neural network fulfills these properties sheds light on the properties of the function that it represents. In this work, we take the verification approach. Our goal is to design a framework for analysis of properties of neural networks. We start by defining a set of interesting properties to analyze. Then we focus on Binarized Neural Networks that can be represented and analyzed using well-developed means of Boolean Satisfiability and Integer Linear Programming. One of our main results is an exact representation of a binarized neural network as a Boolean formula. We also discuss how we can take advantage of the structure of neural networks in the search procedure.


2018 ◽  
Vol 16 (06) ◽  
pp. 895-919 ◽  
Author(s):  
Ding-Xuan Zhou

Deep learning based on structured deep neural networks has provided powerful applications in various fields. The structures imposed on the deep neural networks are crucial, which makes deep learning essentially different from classical schemes based on fully connected neural networks. One of the commonly used deep neural network structures is generated by convolutions. The produced deep learning algorithms form the family of deep convolutional neural networks. Despite of their power in some practical domains, little is known about the mathematical foundation of deep convolutional neural networks such as universality of approximation. In this paper, we propose a family of new structured deep neural networks: deep distributed convolutional neural networks. We show that these deep neural networks have the same order of computational complexity as the deep convolutional neural networks, and we prove their universality of approximation. Some ideas of our analysis are from ridge approximation, wavelets, and learning theory.


Sign in / Sign up

Export Citation Format

Share Document