Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence
Latest Publications


TOTAL DOCUMENTS

870
(FIVE YEARS 0)

H-INDEX

28
(FIVE YEARS 0)

Published By International Joint Conferences On Artificial Intelligence Organization

9780999241127

Author(s):  
Prachi Jain ◽  
Shikhar Murty ◽  
Mausam . ◽  
Soumen Chakrabarti

This paper analyzes the varied performance of Matrix Factorization (MF) on the related tasks of relation extraction and knowledge-base completion, which have been unified recently into a single framework of knowledge-base inference (KBI) [Toutanova et al., 2015]. We first propose a new evaluation protocol that makes comparisons between MF and Tensor Factorization (TF) models fair. We find that this results in a steep drop in MF performance. Our analysis attributes this to the high out-of-vocabulary (OOV) rate of entity pairs in test folds of commonly-used datasets. To alleviate this issue, we propose three extensions to MF. Our best model is a TF-augmented MF model. This hybrid model is robust and obtains strong results across various KBI datasets.


Author(s):  
Guiliang Liu ◽  
Oliver Schulte

A variety of machine learning models have been proposed to assess the performance of players in professional sports. However, they have only a limited ability to model how player performance depends on the game context. This paper proposes a new approach to capturing game context: we apply Deep Reinforcement Learning (DRL) to learn an action-value Q function from 3M play-by-play events in the National Hockey League (NHL). The neural network representation integrates both continuous context signals and game history, using a possession-based LSTM. The learned Q-function is used to value players' actions under different game contexts. To assess a player's overall performance, we introduce a novel Game Impact Metric (GIM) that aggregates the values of the player's actions. Empirical Evaluation shows GIM is consistent throughout a play season, and correlates highly with standard success measures and future salary.


Author(s):  
Hang Ma ◽  
Glenn Wagner ◽  
Ariel Felner ◽  
Jiaoyang Li ◽  
T. K. Satish Kumar ◽  
...  

We formalize Multi-Agent Path Finding with Deadlines (MAPF-DL). The objective is to maximize the number of agents that can reach their given goal vertices from their given start vertices within the deadline, without colliding with each other. We first show that MAPF-DL is NP-hard to solve optimally. We then present two classes of optimal algorithms, one based on a reduction of MAPF-DL to a flow problem and a subsequent compact integer linear programming formulation of the resulting reduced abstracted multi-commodity flow network and the other one based on novel combinatorial search algorithms. Our empirical results demonstrate that these MAPF-DL solvers scale well and each one dominates the other ones in different scenarios.


Author(s):  
Pengcheng Wang ◽  
Jonathan Rowe ◽  
Wookhee Min ◽  
Bradford Mott ◽  
James Lester

Interactive narrative planning offers significant potential for creating adaptive gameplay experiences. While data-driven techniques have been devised that utilize player interaction data to induce policies for interactive narrative planners, they require enormously large gameplay datasets. A promising approach to addressing this challenge is creating simulated players whose behaviors closely approximate those of human players. In this paper, we propose a novel approach to generating high-fidelity simulated players based on deep recurrent highway networks and deep convolutional networks. Empirical results demonstrate that the proposed models significantly outperform the prior state-of-the-art in generating high-fidelity simulated player models that accurately imitate human players’ narrative interactions. Using the high-fidelity simulated player models, we show the advantage of more exploratory reinforcement learning methods for deriving generalizable narrative adaptation policies.


Author(s):  
Hanyuan Zhang ◽  
Hao Wu ◽  
Weiwei Sun ◽  
Baihua Zheng

Estimating the travel time of a path is of great importance to smart urban mobility. Existing approaches are either based on estimating the time cost of each road segment which are not able to capture many cross-segment complex factors, or designed heuristically in a non-learning-based way which fail to leverage the natural abundant temporal labels of the data, i.e., the time stamp of each trajectory point. In this paper, we leverage on new development of deep neural networks and propose a novel auxiliary supervision model, namely DeepTravel, that can automatically and effectively extract different features, as well as make full use of the temporal labels of the trajectory data. We have conducted comprehensive experiments on real datasets to demonstrate the out-performance of DeepTravel over existing approaches. 


Author(s):  
Xiawu Zheng ◽  
Rongrong Ji ◽  
Xiaoshuai Sun ◽  
Yongjian Wu ◽  
Feiyue Huang ◽  
...  

Fine-grained object retrieval has attracted extensive research focus recently. Its state-of-the-art schemesare typically based upon convolutional neural network (CNN) features. Despite the extensive progress, two issues remain open. On one hand, the deep features are coarsely extracted at image level rather than precisely at object level, which are interrupted by background clutters. On the other hand, training CNN features with a standard triplet loss is time consuming and incapable to learn discriminative features. In this paper, we present a novel fine-grained object retrieval scheme that conquers these issues in a unified framework. Firstly, we introduce a novel centralized ranking loss (CRL), which achieves a very efficient (1,000times training speedup comparing to the triplet loss) and discriminative feature learning by a ?centralized? global pooling. Secondly, a weakly supervised attractive feature extraction is proposed, which segments object contours with top-down saliency. Consequently, the contours are integrated into the CNN response map to precisely extract features ?within? the target object. Interestingly, we have discovered that the combination of CRL and weakly supervised learning can reinforce each other. We evaluate the performance ofthe proposed scheme on widely-used benchmarks including CUB200-2011 and CARS196. We havereported significant gains over the state-of-the-art schemes, e.g., 5.4% over SCDA [Wei et al., 2017]on CARS196, and 3.7% on CUB200-2011.  


Author(s):  
Andy Shih ◽  
Arthur Choi ◽  
Adnan Darwiche

We propose an approach for explaining Bayesian network classifiers, which is based on compiling such classifiers into decision functions that have a tractable and symbolic form. We introduce two types of explanations for why a classifier may have classified an instance positively or negatively and suggest algorithms for computing these explanations. The first type of explanation identifies a minimal set of the currently active features that is responsible for the current classification, while the second type of explanation identifies a minimal set of features whose current state (active or not) is sufficient for the classification. We consider in particular the compilation of Naive and Latent-Tree Bayesian network classifiers into Ordered Decision Diagrams (ODDs), providing a context for evaluating our proposal using case studies and experiments based on classifiers from the literature.


Author(s):  
Jose M. Juarez ◽  
Susan Craw ◽  
J. Ricardo Lopez-Delgado ◽  
Manuel Campos

Case-Based Reasoning (CBR) learns new knowledge from data and so can cope with changing environments. CBR is very different from model-based systems since it can learn incrementally as new data is available, storing new cases in its case-base. This means that it can benefit from readily available new data, but also case-base maintenance (CBM) is essential to manage the cases, deleting and compacting the case-base. In the 50th anniversary of CNN (considered the first CBM algorithm), new CBM methods are proposed to deal with the new requirements of Big Data scenarios. In this paper, we present an accessible historic perspective of CBM and we classify and analyse the most recent approaches to deal with these requirements.


Author(s):  
Yuanxing Zhang ◽  
Yangbin Zhang ◽  
Kaigui Bian ◽  
Xiaoming Li

Machine reading comprehension has gained attention from both industry and academia. It is a very challenging task that involves various domains such as language comprehension, knowledge inference, summarization, etc. Previous studies mainly focus on reading comprehension on short paragraphs, and these approaches fail to perform well on the documents. In this paper, we propose a hierarchical match attention model to instruct the machine to extract answers from a specific short span of passages for the long document reading comprehension (LDRC) task. The model takes advantages from hierarchical-LSTM to learn the paragraph-level representation, and implements the match mechanism (i.e., quantifying the relationship between two contexts) to find the most appropriate paragraph that includes the hint of answers. Then the task can be decoupled into reading comprehension task for short paragraph, such that the answer can be produced. Experiments on the modified SQuAD dataset show that our proposed model outperforms existing reading comprehension models by at least 20% regarding exact match (EM), F1 and the proportion of identified paragraphs which are exactly the short paragraphs where the original answers locate.


Author(s):  
Duligur Ibeling ◽  
Thomas Icard

We propose analyzing conditional reasoning by appeal to a notion of intervention on a simulation program, formalizing and subsuming a number of approaches to conditional thinking in the recent AI literature. Our main results include a series of axiomatizations, allowing comparison between this framework and existing frameworks (normality-ordering models, causal structural equation models), and a complexity result establishing NP-completeness of the satisfiability problem. Perhaps surprisingly, some of the basic logical principles common to all existing approaches are invalidated in our causal simulation approach. We suggest that this additional flexibility is important in modeling some intuitive examples.


Sign in / Sign up

Export Citation Format

Share Document