scholarly journals Recent loss of the Dim2 DNA methyltransferase decreases mutation rate in repeats and changes evolutionary trajectory in a fungal pathogen

Author(s):  
Mareike Möller ◽  
Michael Habig ◽  
Cécile Lorrain ◽  
Alice Feurtey ◽  
Janine Haueisen ◽  
...  

AbstractDNA methylation is found throughout all domains of life, yet the extent and function of DNA methylation differ between eukaryotes. Strains of the plant pathogenic fungus Zymoseptoria tritici appeared to lack cytosine DNA methylation (5mC) because gene amplification followed by Repeat-Induced Point mutation (RIP) resulted in the inactivation of the dim2 DNA methyltransferase gene. 5mC is, however, present in closely related sister species. We demonstrate that inactivation of dim2 occurred recently as some Z. tritici isolates carry a functional dim2 gene. Moreover, we show that dim2 inactivation occurred by a different path than previously hypothesized. We mapped the genome-wide distribution of 5mC in strains with and without functional dim2. Presence of functional dim2 correlates with high levels of 5mC in transposable elements (TEs), suggesting a role in genome defense. We identified low levels of 5mC in strains carrying inactive dim2 alleles, suggesting that 5mC is maintained over time, presumably by an active Dnmt5 DNA methyltransferase. Integration of a functional dim2 allele in strains with mutated dim2 restored normal 5mC levels, demonstrating de novo cytosine methylation activity of dim2. To assess the importance of 5mC for genome evolution, we performed an evolution experiment, comparing genomes of strains with high levels of 5mC to genomes of strains lacking dim2. We found that the presence of dim2 alters nucleotide composition by promoting C to T transitions (C→T) specifically at CpA (CA) sites during mitosis, likely contributing to TE inactivation. Our results show that 5mC density at TEs is a polymorphic trait in Z. tritici populations that can impact genome evolution.Author SummaryCytosine DNA methylation (5mC) is known to silence transposable elements in fungi and thereby appears to contribute to genome stability. The genomes of plant pathogenic fungi are highly diverse, differing substantially in transposon content and distribution. Here, we show extensive differences of 5mC levels within a single species of an important wheat pathogen. These differences were caused by inactivation of the DNA methyltransferase Dim2 in the majority of studied isolates. Presence of widespread 5mC increased point mutation rates in regions with active or mutated transposable elements during mitosis. The mutation pattern is dependent on the presence of Dim2 and resembles a mitotic version of Repeat-Induced Point mutation (RIP). Thus, loss of 5mC may represent an evolutionary trade-off offering adaptive potential at the cost of transposon control.

PLoS Genetics ◽  
2021 ◽  
Vol 17 (3) ◽  
pp. e1009448
Author(s):  
Mareike Möller ◽  
Michael Habig ◽  
Cécile Lorrain ◽  
Alice Feurtey ◽  
Janine Haueisen ◽  
...  

DNA methylation is found throughout all domains of life, yet the extent and function of DNA methylation differ among eukaryotes. Strains of the plant pathogenic fungus Zymoseptoria tritici appeared to lack cytosine DNA methylation (5mC) because gene amplification followed by Repeat-Induced Point mutation (RIP) resulted in the inactivation of the dim2 DNA methyltransferase gene. 5mC is, however, present in closely related sister species. We demonstrate that inactivation of dim2 occurred recently as some Z. tritici isolates carry a functional dim2 gene. Moreover, we show that dim2 inactivation occurred by a different path than previously hypothesized. We mapped the genome-wide distribution of 5mC in strains with or without functional dim2 alleles. Presence of functional dim2 correlates with high levels of 5mC in transposable elements (TEs), suggesting a role in genome defense. We identified low levels of 5mC in strains carrying non-functional dim2 alleles, suggesting that 5mC is maintained over time, presumably by an active Dnmt5 DNA methyltransferase. Integration of a functional dim2 allele in strains with mutated dim2 restored normal 5mC levels, demonstrating de novo cytosine methylation activity of Dim2. To assess the importance of 5mC for genome evolution, we performed an evolution experiment, comparing genomes of strains with high levels of 5mC to genomes of strains lacking functional dim2. We found that presence of a functional dim2 allele alters nucleotide composition by promoting C to T transitions (C→T) specifically at CpA (CA) sites during mitosis, likely contributing to TE inactivation. Our results show that 5mC density at TEs is a polymorphic trait in Z. tritici populations that can impact genome evolution.


1995 ◽  
Vol 15 (10) ◽  
pp. 5586-5597 ◽  
Author(s):  
M J Singer ◽  
B A Marcotte ◽  
E U Selker

Repeat-induced point mutation (RIP) is a process that efficiently detects DNA duplications prior to meiosis in Neurospora crassa and peppers them with G:C to A:T mutations. Cytosine methylation is typically associated with sequences affected by RIP, and methylated cytosines are not limited to CpG dinucleotides. We generated and characterized a collection of methylated and unmethylated amRIP alleles to investigate the connection(s) between DNA methylation and mutations by RIP. Alleles of am harboring 84 to 158 mutations in the 2.6-kb region that was duplicated were heavily methylated and triggered de novo methylation when reintroduced into vegetative N. crassa cells. Alleles containing 45 and 56 mutations were methylated in the strains originally isolated but did not become methylated when reintroduced into vegetative cells. This provides the first evidence for de novo methylation in the sexual cycle and for a maintenance methylation system in Neurospora cells. No methylation was detected in am alleles containing 8 and 21 mutations. All mutations in the eight primary alleles studied were either G to A or C to T, with respect to the coding strand of the am gene, suggesting that RIP results in only one type of mutation. We consider possibilities for how DNA methylation is triggered by some sequences altered by RIP.


2020 ◽  
Vol 48 (7) ◽  
pp. 3949-3961 ◽  
Author(s):  
Chien-Chu Lin ◽  
Yi-Ping Chen ◽  
Wei-Zen Yang ◽  
James C K Shen ◽  
Hanna S Yuan

Abstract DNA methyltransferases are primary enzymes for cytosine methylation at CpG sites of epigenetic gene regulation in mammals. De novo methyltransferases DNMT3A and DNMT3B create DNA methylation patterns during development, but how they differentially implement genomic DNA methylation patterns is poorly understood. Here, we report crystal structures of the catalytic domain of human DNMT3B–3L complex, noncovalently bound with and without DNA of different sequences. Human DNMT3B uses two flexible loops to enclose DNA and employs its catalytic loop to flip out the cytosine base. As opposed to DNMT3A, DNMT3B specifically recognizes DNA with CpGpG sites via residues Asn779 and Lys777 in its more stable and well-ordered target recognition domain loop to facilitate processive methylation of tandemly repeated CpG sites. We also identify a proton wire water channel for the final deprotonation step, revealing the complete working mechanism for cytosine methylation by DNMT3B and providing the structural basis for DNMT3B mutation-induced hypomethylation in immunodeficiency, centromere instability and facial anomalies syndrome.


2003 ◽  
Vol 23 (7) ◽  
pp. 2379-2394 ◽  
Author(s):  
Hisashi Tamaru ◽  
Eric U. Selker

ABSTRACT Most 5-methylcytosine in Neurospora crassa occurs in A:T-rich sequences high in TpA dinucleotides, hallmarks of repeat-induced point mutation. To investigate how such sequences induce methylation, we developed a sensitive in vivo system. Tests of various 25- to 100-bp synthetic DNA sequences revealed that both T and A residues were required on a given strand to induce appreciable methylation. Segments composed of (TAAA) n or (TTAA) n were the most potent signals; 25-mers induced robust methylation at the special test site, and a 75-mer induced methylation elsewhere. G:C base pairs inhibited methylation, and cytosines 5′ of ApT dinucleotides were particularly inhibitory. Weak signals could be strengthened by extending their lengths. A:T tracts as short as two were found to cooperate to induce methylation. Distamycin, which, like the AT-hook DNA binding motif found in proteins such as mammalian HMG-I, binds to the minor groove of A:T-rich sequences, suppressed DNA methylation and gene silencing. We also found a correlation between the strength of methylation signals and their binding to an AT-hook protein (HMG-I) and to activities in a Neurospora extract. We propose that de novo DNA methylation in Neurospora cells is triggered by cooperative recognition of the minor groove of multiple short A:T tracts. Similarities between sequences subjected to repeat-induced point mutation in Neurospora crassa and A:T-rich repeated sequences in heterochromatin in other organisms suggest that related mechanisms control silent chromatin in fungi, plants, and animals.


2009 ◽  
Vol 21 (9) ◽  
pp. 43
Author(s):  
Y. Li ◽  
H. D. Morgan ◽  
L. Ganeshan ◽  
C. O'Neill

In an accompanying abstract we show for the first time that global demethylation of both paternally- and maternally-derived genomes occurs prior to syngamy. It is commonly considered that new methylation of the genome does not commence until late in the preimplantation stage. Yet embryos during cleavage stage are known to show DNA methylation. This creates a paradox, if global demethylation occurs by the time of syngamy yet remethylation does not occur until the blastocysts stage, how can cleavage stage embryos possess methylated DNA. We examined this paradox. We examined DNA methylation in 2-cell embryos by confocal microscopy of anti-methylcytosine immunofluorescence and propidium iodide co-staining of whole mounts. We confirmed that DNA in late zygotes was substantially demethylated in both the male and female pronuclei. By the 2-cell stage, embryos collected direct from the oviduct showed high levels of cytosine methylation. We assessed whether this accumulation of cytosine methylation during the early 2-cell stage was a consequence of DNA methyltransferase (DNMT) activity. This was achieved by treating late stage zygotes with the DNMT inhibitor RG108 (5 μM) for the period of development spanning pronuclear stage 5 to early 2-cell stage. The embryos that developed in the presence of the DNA methyltransferase inhibitor showed significantly less methylcytosine staining than the embryos in the untreated culture conditions (P<0.001). Treatment of embryos during this period with RG108 significantly reduced their capacity to develop to normal blastocysts, indicating that this early DNA re-methylation reaction was important for the normal development of the embryo. Our results show for the first time that de novo methylation of the genome occurs as early as the 2-cell stage of development and that this is mediated by a RG108-sensitive DNMT activity. The results substantially change our understanding of epigenetic reprogramming in the early embryo.


Biology ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 91 ◽  
Author(s):  
Miryam Pérez-Cañamás ◽  
Elizabeth Hevia ◽  
Carmen Hernández

DNA cytosine methylation is one of the main epigenetic mechanisms in higher eukaryotes and is considered to play a key role in transcriptional gene silencing. In plants, cytosine methylation can occur in all sequence contexts (CG, CHG, and CHH), and its levels are controlled by multiple pathways, including de novo methylation, maintenance methylation, and demethylation. Modulation of DNA methylation represents a potentially robust mechanism to adjust gene expression following exposure to different stresses. However, the potential involvement of epigenetics in plant-virus interactions has been scarcely explored, especially with regard to RNA viruses. Here, we studied the impact of a symptomless viral infection on the epigenetic status of the host genome. We focused our attention on the interaction between Nicotiana benthamiana and Pelargonium line pattern virus (PLPV, family Tombusviridae), and analyzed cytosine methylation in the repetitive genomic element corresponding to ribosomal DNA (rDNA). Through a combination of bisulfite sequencing and RT-qPCR, we obtained data showing that PLPV infection gives rise to a reduction in methylation at CG sites of the rDNA promoter. Such a reduction correlated with an increase and decrease, respectively, in the expression levels of some key demethylases and of MET1, the DNA methyltransferase responsible for the maintenance of CG methylation. Hypomethylation of rDNA promoter was associated with a five-fold augmentation of rRNA precursor levels. The PLPV protein p37, reported as a suppressor of post-transcriptional gene silencing, did not lead to the same effects when expressed alone and, thus, it is unlikely to act as suppressor of transcriptional gene silencing. Collectively, the results suggest that PLPV infection as a whole is able to modulate host transcriptional activity through changes in the cytosine methylation pattern arising from misregulation of methyltransferases/demethylases balance.


Nature Plants ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 184-197
Author(s):  
Jianjun Jiang ◽  
Jie Liu ◽  
Dean Sanders ◽  
Shuiming Qian ◽  
Wendan Ren ◽  
...  

Genes ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 172 ◽  
Author(s):  
Hemant Gujar ◽  
Daniel Weisenberger ◽  
Gangning Liang

A DNA sequence is the hard copy of the human genome and it is a driving force in determining the physiological processes in an organism. Concurrently, the chemical modification of the genome and its related histone proteins is dynamically involved in regulating physiological processes and diseases, which overall constitutes the epigenome network. Among the various forms of epigenetic modifications, DNA methylation at the C-5 position of cytosine in the cytosine–guanine (CpG) dinucleotide is one of the most well studied epigenetic modifications. DNA methyltransferases (DNMTs) are a family of enzymes involved in generating and maintaining CpG methylation across the genome. In mammalian systems, DNA methylation is performed by DNMT1 and DNMT3s (DNMT3A and 3B). DNMT1 is predominantly involved in the maintenance of DNA methylation during cell division, while DNMT3s are involved in establishing de novo cytosine methylation and maintenance in both embryonic and somatic cells. In general, all DNMTs require accessory proteins, such as ubiquitin-like containing plant homeodomain (PHD) and really interesting new gene (RING) finger domain 1 (UHRF1) or DNMT3-like (DNMT3L), for their biological function. This review mainly focuses on the role of DNMT3B and its isoforms in de novo methylation and maintenance of DNA methylation, especially with respect to their role as an accessory protein.


2021 ◽  
Author(s):  
Masaki Shirai ◽  
Takuya Nara ◽  
Haruko Takahashi ◽  
Kazuya Takayama ◽  
Yuan Chen ◽  
...  

CpG methylation in genomic DNA is well known as a repressive epigenetic marker in eukaryotic transcription, and DNA methylation of the promoter regions is correlated with silencing of gene expression. In contrast to the promoter regions, the function of DNA methylation during transcription termination remains to be elucidated. A recent study has revealed that mouse DNA methyltransferase 3a (Dnmt3a) mainly functions in de novo methylation in the promoter and gene body regions (including transcription termination sites (TTSs)) during development. To investigate the relationship between DNA methylation overlapping the TTSs and transcription termination, we employed two strategies: informatic analysis using already deposited datasets of Dnmt3a-/- mouse cells and the zebrafish model system. Bioinformatic analysis using methylome and transcriptome data showed that hypomethylated differentially methylated regions overlapping the TTSs were associated with increased read counts and chimeric transcripts downstream of TTSs in Dnmt3a-/- Agouti-related protein neurons, but not in Dnmt3a-/- ES cells and MEFs. We experimentally detected increased read-through and chimeric transcripts downstream of hypomethylated TTSs in zebrafish maternal-zygotic dnmt3aa-/- mutants. This study is the first to identify transcription termination defects in DNA hypomethylated TTSs in Dnmt3a-/- vertebrates.


Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1325
Author(s):  
Fenfen Li ◽  
Xin Cui ◽  
Jia Jing ◽  
Shirong Wang ◽  
Huidong Shi ◽  
...  

Obesity results from a chronic energy imbalance due to energy intake exceeding energy expenditure. Activation of brown fat thermogenesis has been shown to combat obesity. Epigenetic regulation, including DNA methylation, has emerged as a key regulator of brown fat thermogenic function. Here we aimed to study the role of Dnmt3b, a DNA methyltransferase involved in de novo DNA methylation, in the regulation of brown fat thermogenesis and obesity. We found that the specific deletion of Dnmt3b in brown fat promotes the thermogenic and mitochondrial program in brown fat, enhances energy expenditure, and decreases adiposity in female mice fed a regular chow diet. With a lean phenotype, the female knockout mice also exhibit increased insulin sensitivity. In addition, Dnmt3b deficiency in brown fat also prevents diet-induced obesity and insulin resistance in female mice. Interestingly, our RNA-seq analysis revealed an upregulation of the PI3K-Akt pathway in the brown fat of female Dnmt3b knockout mice. However, male Dnmt3b knockout mice have no change in their body weight, suggesting the existence of sexual dimorphism in the brown fat Dnmt3b knockout model. Our data demonstrate that Dnmt3b plays an important role in the regulation of brown fat function, energy metabolism and obesity in female mice.


Sign in / Sign up

Export Citation Format

Share Document