binding motif
Recently Published Documents


TOTAL DOCUMENTS

3249
(FIVE YEARS 969)

H-INDEX

127
(FIVE YEARS 14)

Author(s):  
Yvonne H. W. Derks ◽  
Sanne A. M. van Lith ◽  
Helene I. V. Amatdjais-Groenen ◽  
Lieke W. M. Wouters ◽  
Annemarie Kip ◽  
...  

Abstract  Introduction The first generation ligands for prostate-specific membrane antigen (PSMA)–targeted radio- and fluorescence-guided surgery followed by adjuvant photodynamic therapy (PDT) have already shown the potential of this approach. Here, we developed three new photosensitizer-based dual-labeled PSMA ligands by crucial modification of existing PSMA ligand backbone structures (PSMA-1007/PSMA-617) for multimodal imaging and targeted PDT of PCa. Methods Various new PSMA ligands were synthesized using solid-phase chemistry and provided with a DOTA chelator for 111In labeling and the fluorophore/photosensitizer IRDye700DX. The performance of three new dual-labeled ligands was compared with a previously published first-generation ligand (PSMA-N064) and a control ligand with an incomplete PSMA-binding motif. PSMA specificity, affinity, and PDT efficacy of these ligands were determined in LS174T-PSMA cells and control LS174T wildtype cells. Tumor targeting properties were evaluated in BALB/c nude mice with subcutaneous LS174T-PSMA and LS174T wildtype tumors using µSPECT/CT imaging, fluorescence imaging, and biodistribution studies after dissection. Results In order to synthesize the new dual-labeled ligands, we modified the PSMA peptide linker by substitution of a glutamic acid into a lysine residue, providing a handle for conjugation of multiple functional moieties. Ligand optimization showed that the new backbone structure leads to high-affinity PSMA ligands (all IC50 < 50 nM). Moreover, ligand-mediated PDT led to a PSMA-specific decrease in cell viability in vitro (P < 0.001). Linker modification significantly improved tumor targeting compared to the previously developed PSMA-N064 ligand (≥ 20 ± 3%ID/g vs 14 ± 2%ID/g, P < 0.01) and enabled specific visualization of PMSA-positive tumors using both radionuclide and fluorescence imaging in mice. Conclusion The new high-affinity dual-labeled PSMA-targeting ligands with optimized backbone compositions showed increased tumor targeting and enabled multimodal image-guided PCa surgery combined with targeted photodynamic therapy.


2022 ◽  
Author(s):  
Petr Jurecka ◽  
Marie Zgarbova ◽  
Filip Cerny ◽  
Jan Salomon

When DNA interacts with a protein, its structure often undergoes significant conformational adaptation. Perhaps the most common is the transition from canonical B-DNA towards the A-DNA form, which is not a two-state, but rather a continuous transition. The A- and B- forms differ mainly in sugar pucker P (north/south) and glycosidic torsion χ (high-anti/anti). The combination of A-like P and B-like χ (and vice versa) represents the nature of the intermediate states lying between the pure A- and B- forms. In this work, we study how the A/B equilibrium and in particular the A/B intermediate states, which are known to be over-represented at protein-DNA interfaces, are modeled by current AMBER force fields. Eight protein-DNA complexes and their naked (unbound) DNAs were simulated with OL15 and bsc1 force fields as well as an experimental combination OL15χOL3. We found that while the geometries of the A-like intermediate states in the molecular dynamics (MD) simulations agree well with the native X-ray geometries found in the protein-DNA complexes, their populations (stabilities) are significantly underestimated. Different force fields predict different propensities for A-like states growing in the order OL15 < bsc1 < OL15χOL3, but the overall populations of the A-like form are too low in all of them. Interestingly, the force fields seem to predict the correct sequence-dependent A-form propensity, as they predict larger populations of the A-like form in naked (unbound) DNA in those steps that acquire A-like conformations in protein-DNA complexes. The instability of A-like geometries in current force fields may significantly alter the geometry of the simulated protein-DNA complex, destabilize the binding motif, and reduce the binding energy, suggesting that refinement is needed to improve description of protein-DNA interactions in AMBER force fields.


2022 ◽  
Vol 119 (4) ◽  
pp. e2117576119
Author(s):  
Bo Yang ◽  
Yuanyuan Jia ◽  
Yumin Meng ◽  
Ying Xue ◽  
Kefang Liu ◽  
...  

After binding to its cell surface receptor angiotensin converting enzyme 2 (ACE2), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the host cell through directly fusing with plasma membrane (cell surface pathway) or undergoing endocytosis traveling to lysosome/late endosome for membrane fusion (endocytic pathway). However, the endocytic entry regulation by host cell remains elusive. Recent studies show ACE2 possesses a type I PDZ binding motif (PBM) through which it could interact with a PDZ domain-containing protein such as sorting nexin 27 (SNX27). In this study, we determined the ACE2-PBM/SNX27-PDZ complex structure, and, through a series of functional analyses, we found SNX27 plays an important role in regulating the homeostasis of ACE2 receptor. More importantly, we demonstrated SNX27, together with retromer complex (the core component of the endosomal protein sorting machinery), prevents ACE2/virus complex from entering lysosome/late endosome, resulting in decreased viral entry in cells where the endocytic pathway dominates. The ACE2/virus retrieval mediated by SNX27–retromer could be considered as a countermeasure against invasion of ACE2 receptor-using SARS coronaviruses.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Ashutosh Dash ◽  
Siddhesh B. Ghag

AbstractProgrammed cell death (PCD) is a genetically controlled process for the selective removal of damaged cells. Though understanding about plant PCD has improved over years, the mechanisms are yet to be fully deciphered. Among the several molecular players of PCD in plants, B cell lymphoma 2 (Bcl-2)-associated athanogene (BAG) family of co-chaperones are evolutionary conserved and regulate cell death, growth and development. In this study, we performed a genome-wide in silico analysis of the MusaBAG gene family in a globally important fruit crop banana. Thirteen MusaBAG genes were identified, out of which MusaBAG1, 7 and 8 genes were found to have multiple copies. MusaBAG genes were distributed on seven out of 11 chromosomes in banana. Except for one paralog of MusaBAG8 all the other 12 proteins have characteristic BAG domain. MusaBAG1, 2 and 4 have an additional ubiquitin-like domain whereas MusaBAG5-8 have a calmodulin binding motif. Most of the MusaBAG proteins were predicted to be localized in the nucleus and mitochondria or chloroplast. The in silico cis-regulatory element analysis suggested regulation associated with photoperiodic control, abiotic and biotic stress. The phylogenetic analysis revealed 2 major clusters. Digital gene expression analysis and quantitative real-time RT-PCR depicted the differential expression pattern of MusaBAG genes under abiotic and biotic stress conditions. Further studies are warranted to uncover the role of each of these proteins in growth, PCD and stress responses so as to explore them as candidate genes for engineering transgenic banana plants with improved agronomic traits.


Author(s):  
Genki Yamato ◽  
Tomoko Kawai ◽  
Norio Shiba ◽  
Junji Ikeda ◽  
Yusuke Hara ◽  
...  

We investigated genome-wide DNA methylation patterns in 64 pediatric patients with acute myeloid leukemia (AML). Based on unsupervised clustering with 567 most variably methylated CpG sites, patients were categorized into four clusters associated with genetic alterations. Clusters 1 and 3 were characterized by the presence of known favorable prognostic factors, such as RUNX1-RUNX1T1 fusion and KMT2A rearrangement with low MECOM expression, and biallelic CEBPA mutations (all 8 patients), respectively. Clusters 2 and 4 comprised patients exhibiting molecular features associated with adverse outcomes, namely FLT3-ITD, KMT2A-PTD, and high PRDM16 expression. Depending on the methylation values of the 1243 CpG sites that were significantly different between FLT3-ITD positive and negative AML, patients were categorized into three clusters: A, B, and C. The STAT5-binding motif was most frequently found close to the 1,243 CpG sites. All eight patients with FLT3-ITD in Cluster A harbored high PRDM16 expression and experienced adverse events, whereas only one of seven patients with FLT3-ITD in the other clusters experienced adverse events. PRDM16 expression levels were also related to DNA methylation patterns, which were drastically changed at the cutoff value of PRDM16/ABL1 = 0.10. The assay for transposase-accessible chromatin sequencing of AMLs supported enhanced chromatin accessibilities around genomic regions, such as HOXB cluster genes, SCHIP1, and PRDM16, which were associated with DNA methylation changes in AMLs with FLT3-ITD and high PRDM16 expression. Our results suggest that DNA methylation levels at specific CpG sites are useful to support genetic alterations and gene expression patterns of patients with pediatric AML.


2022 ◽  
Author(s):  
Maciek Adamowski ◽  
Ivana Matijević ◽  
Jiří Friml

Formation of endomembrane vesicles is crucial in all eukaryotic cells and relies on vesicle coats such as clathrin. Clathrin-coated vesicles form at the plasma membrane and the trans-Golgi Network. They contain adaptor proteins, which serve as binding bridges between clathrin, vesicle membranes, and cargoes. A large family of monomeric ANTH/ENTH/VHS adaptors is present in A. thaliana. Here, we characterize two homologous ANTH-type clathrin adaptors, CAP1 and ECA4, in clathrin-mediated endocytosis (CME). CAP1 and ECA4 are recruited to sites at the PM identified as clathrin-coated pits (CCPs), where they occasionally exhibit early bursts of high recruitment. Subcellular binding preferences of N- and C-terminal fluorescent protein fusions of CAP1 identified a functional adaptin-binding motif in the unstructured tails of CAP1 and ECA4. In turn, no function can be ascribed to a double serine phosphorylation site conserved in these proteins. Double knockout mutants do not exhibit deficiencies in general development or CME, but a contribution of CAP1 and ECA4 to these processes is revealed in crosses into sensitized endocytic mutant backgrounds. Overall, our study documents a contribution of CAP1 and ECA4 to CME in A. thaliana and opens questions about functional redundancy among non-homologous vesicle coat components.


2022 ◽  
Author(s):  
Chao Wang ◽  
Nadia Elghobashi-Meinhardt ◽  
William E Balch

Understanding the fitness landscape of viral mutations is crucial for uncovering the evolutionary mechanisms contributing to pandemic behavior. Here, we apply a Gaussian process regression (GPR) based machine learning approach that generates spatial covariance (SCV) relationships to construct stability fitness landscapes for the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2. GPR generated fitness scores capture on a residue-by-residue basis a covariant fitness cluster centered at the C487-H642-C645-C646 Zn2+ binding motif that iteratively evolves since the early phase pandemic. In the Alpha and Delta variant of concern (VOC), multi-residue SCV interactions in the NiRAN domain form a second fitness cluster contributing to spread. Strikingly, a novel third fitness cluster harboring a Delta VOC basal mutation G671S augments RdRp structural plasticity to potentially promote rapid spread through viral load. GPR principled SCV provides a generalizable tool to mechanistically understand evolution of viral genomes at atomic resolution contributing to fitness at the pathogen-host interface.


2022 ◽  
Vol 12 ◽  
Author(s):  
Hongli Zhang ◽  
Pablo Perez-Garcia ◽  
Robert F. Dierkes ◽  
Violetta Applegate ◽  
Julia Schumacher ◽  
...  

Certain members of the Actinobacteria and Proteobacteria are known to degrade polyethylene terephthalate (PET). Here, we describe the first functional PET-active enzymes from the Bacteroidetes phylum. Using a PETase-specific Hidden-Markov-Model- (HMM-) based search algorithm, we identified several PETase candidates from Flavobacteriaceae and Porphyromonadaceae. Among them, two promiscuous and cold-active esterases derived from Aequorivita sp. (PET27) and Kaistella jeonii (PET30) showed depolymerizing activity on polycaprolactone (PCL), amorphous PET foil and on the polyester polyurethane Impranil® DLN. PET27 is a 37.8 kDa enzyme that released an average of 174.4 nmol terephthalic acid (TPA) after 120 h at 30°C from a 7 mg PET foil platelet in a 200 μl reaction volume, 38-times more than PET30 (37.4 kDa) released under the same conditions. The crystal structure of PET30 without its C-terminal Por-domain (PET30ΔPorC) was solved at 2.1 Å and displays high structural similarity to the IsPETase. PET30 shows a Phe-Met-Tyr substrate binding motif, which seems to be a unique feature, as IsPETase, LCC and PET2 all contain Tyr-Met-Trp binding residues, while PET27 possesses a Phe-Met-Trp motif that is identical to Cut190. Microscopic analyses showed that K. jeonii cells are indeed able to bind on and colonize PET surfaces after a few days of incubation. Homologs of PET27 and PET30 were detected in metagenomes, predominantly aquatic habitats, encompassing a wide range of different global climate zones and suggesting a hitherto unknown influence of this bacterial phylum on man-made polymer degradation.


2022 ◽  
Author(s):  
Andrei Neamtu ◽  
Francesca Mocci ◽  
Aatto Laaksonen ◽  
Fernando Luis Barroso da Silva

A highly efficient and robust multiple scales in silico protocol, consisting of atomistic constant charge Molecular Dynamics (MD), constant-charge coarse-grain (CG) MD and constant-pH CG Monte Carlo (MC), has been used to study the binding affinities, the free energy of complexation of selected antigen-binding fragments of the monoclonal antibody (mAbs) CR3022 (originally derived from SARS-CoV-1 patients almost two decades ago) and 11 SARS-CoV-2 variants including the wild type. CR3022 binds strongly to the receptor-binding domain (RBD) of SARS-CoV-2 spike protein, but chooses a different site rather than the receptor-binding motif (RBM) of RBD, allowing its combined use with other mAbs against new emerging virus variants. Totally 235,000 mAbs structures were generated using the RosettaAntibodyDesign software, resulting in top 10 scored CR3022-RBD complexes with critical mutations and compared to the native one, all having the potential to block virus-host cell interaction. Of these 10 finalists, two candidates were further identified in the CG simulations to be clearly best against all virus variants, and surprisingly, all 10 candidates and the native CR3022 did exhibit a higher affinity for the Omicron variant with its highest number of mutations (15) of them all considered in this study. The multiscale protocol gives us a powerful rational tool to design efficient mAbs. The electrostatic interactions play a crucial role and appear to be controlling the affinity and complex building. Clearly, mAbs carrying a lower net charge show a higher affinity. Structural determinants could be identified in atomistic simulations and their roles are discussed in detail to further hint at a strategy towards designing the best RBD binder. Although the SARS-CoV-2 was specifically targeted in this work, our approach is generally suitable for many diseases and viral and bacterial pathogens, leukemia, cancer, multiple sclerosis, rheumatoid, arthritis, lupus, and more.


2022 ◽  
Author(s):  
Michael D Sacco ◽  
Shaohui Wang ◽  
Swamy R Adapa ◽  
Xiujun Zhang ◽  
Maura V Gongora ◽  
...  

β-Lactam antibiotics, particularly cephalosporins, are major risk factors for C. difficile infection (CDI), the most common hospital acquired infection. These broad-spectrum antibiotics irreversibly inhibit penicillin-binding proteins (PBPs), essential enzymes that assemble the bacterial cell wall. Little is known about the C. difficile PBPs, yet they play central roles in the growth, infection, and transmission of this pathogen. In this study we discover that PBP2, essential for vegetative growth, is the primary bactericidal target for β-lactams in C. difficile. We further demonstrate PBP2 is insensitive to cephalosporin inhibition, revealing a key cause of the well-documented, but poorly understood, cephalosporin resistance in C. difficile. For the first time, we determine the crystal structures of C. difficile PBP2, which bears several highly unique features, including significant ligand-induced conformational changes and an active site Zn2+-binding motif that influences β-lactam binding and protein stability. Remarkably, this motif is shared in two other C. difficile PBPs essential for sporulation, PBP3 and SpoVD. While these PBPs are present in a wide range of bacterial taxa, including species in extreme environments and the human gut, they are mostly found in anaerobes, typically Firmicutes. The widespread presence of this convergently evolved thiol-containing motif and its cognate Zn2+ suggests it may function as a redox-sensor to regulate cell wall synthesis for survival in adverse environments. Collectively, our findings address important etiological questions surrounding C. difficile, characterize new elements of PBP structure and function, and lay the groundwork for antibiotic development targeting both C. difficile growth and sporulation.


Sign in / Sign up

Export Citation Format

Share Document