scholarly journals Chimpanzee (Pan troglodytes verus) density and environmental gradients at their biogeographical range edge

2020 ◽  
Author(s):  
Erin G. Wessling ◽  
Paula Dieguez ◽  
Manuel Llana ◽  
Liliana Pacheco ◽  
Jill D. Pruetz ◽  
...  

ABSTRACTIdentifying ecological gradients at the range edge of a species is an essential step in revealing the underlying mechanisms and constraints that limit the species’ geographic range. We aimed to describe the patterns of variation in chimpanzee (Pan troglodytes verus) density and habitat characteristics perpendicular to the northern edge of their range and to investigate potential environmental mechanisms underlying chimpanzee distribution in a savanna-mosaic habitat. We estimated chimpanzee densities at six sites forming a 126 km latitudinal gradient at the biogeographical range edge of the western chimpanzee in the savanna-mosaic habitats of southeastern Senegal. To accompany these data, we used systematically placed vegetation plots to characterize the habitats at each site for habitat heterogeneity, tree density and size, floral assemblages, among other variables. We found that both biotic and abiotic factors are potential determinants of the chimpanzee range limit in this ecoregion. Specifically, chimpanzee-occupied landscapes at the limit had smaller available floral assemblages, less habitat heterogeneity, and contained fewer closed canopy habitats in which chimpanzees could seek refuge from high temperatures than landscapes farther from the range limit. This pattern was accompanied by a decline in chimpanzee density with increasing proximity to the range limit. Our results provide several indications of the potential limits of food species diversity, thermal refuge, and water availability to the chimpanzee niche and the implications of these limits for chimpanzee biogeography, especially in the face of climate change predictions, as well as to species distributional modeling more generally.

2020 ◽  
Vol 41 (6) ◽  
pp. 822-848 ◽  
Author(s):  
Erin G. Wessling ◽  
Paula Dieguez ◽  
Manuel Llana ◽  
Liliana Pacheco ◽  
Jill D. Pruetz ◽  
...  

2020 ◽  
Author(s):  
Ana Paula S Carvalho ◽  
Ryan A St Laurent ◽  
Emmanuel F A Toussaint ◽  
Caroline Storer ◽  
Kelly M Dexter ◽  
...  

Abstract Understanding the evolutionary mechanisms governing the uneven distribution of species richness across the tree of life is a great challenge in biology. Scientists have long argued that sexual conflict is a key driver of speciation. This hypothesis, however, has been highly debated in light of empirical evidence. Recent advances in the study of macroevolution make it possible to test this hypothesis with more data and increased accuracy. In the present study, we use phylogenomics combined with four different diversification rate analytical approaches to test whether sexual conflict is a driver of speciation in brush-footed butterflies of the tribe Acraeini. The presence of a sphragis, an external mating plug found in most species among Acraeini, was used as a proxy for sexual conflict. Diversification analyses statistically rejected the hypothesis that sexual conflict is associated with shifts in diversification rates in Acraeini. This result contrasts with earlier studies and suggests that the underlying mechanisms driving diversification are more complex than previously considered. In the case of butterflies, natural history traits acting in concert with abiotic factors possibly play a stronger role in triggering speciation than does sexual conflict. [Acraeini butterflies; arms race; exon capture phylogenomics; Lepidoptera macroevolution; sexual selection; sphragis.]


2017 ◽  
Vol 163 (3) ◽  
pp. 480-496 ◽  
Author(s):  
Stacy Lindshield ◽  
Brent J. Danielson ◽  
Jessica M. Rothman ◽  
Jill D. Pruetz

2010 ◽  
Vol 21 (1) ◽  
pp. 59-71 ◽  
Author(s):  
JESÚS CARO ◽  
DIEGO ONTIVEROS ◽  
MANUEL PIZARRO ◽  
JUAN M. PLEGUEZUELOS

SummaryBonelli’s Eagle Hieraaetus fasciatus and Golden Eagle Aquila chrysaetos are two declining species, in which floaters tend to be located outside of breeding territories during the dispersal period, in so-called settlement areas. We studied settlement areas for both these long-lived raptors in the southern Iberian Peninsula, to gain a better understanding of the ecological requirements of the eagles during their long pre-adult stage, a period accounting for around 80% of the species’ mortality. Eagle abundance was calculated by road censuses, and habitat characteristics of settlement and non-settlement areas compared by General Discriminant Analysis (GDA) and Logistic Regression (LR). The best model of GDA and LR incorporated the abundance of main prey for eagles (rabbits, partridges) and orchard surface area, and explained 100% of eagle presence; the best model selected by GDA also included habitat heterogeneity. Both eagles tended to share settlement areas in the southern Iberian Peninsula and, when they did not, the mean annual temperature and slope appeared to explain the segregation between the two species. Management measures for the conservation of both threatened species during the dispersal period should be focused on identifying settlement areas, maintaining high prey densities and maximum habitat heterogeneity.


Primates ◽  
2018 ◽  
Vol 60 (1) ◽  
pp. 29-39 ◽  
Author(s):  
Ellen Norlén ◽  
Desirée Sjöström ◽  
Madeleine Hjelm ◽  
Therese Hård ◽  
Matthias Laska

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Martin U. Grüebler ◽  
Johann von Hirschheydt ◽  
Fränzi Korner-Nievergelt

AbstractThe formation of an upper distributional range limit for species breeding along mountain slopes is often based on environmental gradients resulting in changing demographic rates towards high elevations. However, we still lack an empirical understanding of how the interplay of demographic parameters forms the upper range limit in highly mobile species. Here, we study apparent survival and within-study area dispersal over a 700 m elevational gradient in barn swallows (Hirundo rustica) by using 15 years of capture-mark-recapture data. Annual apparent survival of adult breeding birds decreased while breeding dispersal probability of adult females, but not males increased towards the upper range limit. Individuals at high elevations dispersed to farms situated at elevations lower than would be expected by random dispersal. These results suggest higher turn-over rates of breeding individuals at high elevations, an elevational increase in immigration and thus, within-population source-sink dynamics between low and high elevations. The formation of the upper range limit therefore is based on preference for low-elevation breeding sites and immigration to high elevations. Thus, shifts of the upper range limit are not only affected by changes in the quality of high-elevation habitats but also by factors affecting the number of immigrants produced at low elevations.


Sign in / Sign up

Export Citation Format

Share Document