scholarly journals Ancient and recent introgression shape the evolutionary history of pollinator adaptation and speciation in a model monkeyflower radiation (Mimulus section Erythranthe)

Author(s):  
Thomas C. Nelson ◽  
Angela M. Stathos ◽  
Daniel D. Vanderpool ◽  
Findley R. Finseth ◽  
Yao-wu Yuan ◽  
...  

AbstractInferences about past processes of adaptation and speciation require a gene-scale and genome-wide understanding of the evolutionary history of diverging taxa. In this study, we use genome-wide capture of nuclear gene sequences, plus skimming of organellar sequences, to investigate the phylogenomics of monkeyflowers in Mimulus section Erythranthe (27 accessions from seven species). Taxa within Erythranthe, particularly the parapatric and putatively sister species M. lewisii (bee-pollinated) and M. cardinalis (hummingbird-pollinated), have been a model system for investigating the ecological genetics of speciation and adaptation for over five decades. Across >8000 nuclear loci, multiple methods resolve a predominant species tree in which M. cardinalis groups with other hummingbird-pollinated taxa (37% of gene trees), rather than being sister to M. lewisii (32% of gene trees). We independently corroborate a single evolution of hummingbird pollination syndrome in Erythranthe by demonstrating functional redundancy in genetic complementation tests of floral traits in hybrids; together, these analyses overturn a textbook case of pollination-syndrome convergence. Strong asymmetries in allele-sharing (Patterson’s D-statistic and related tests) indicate that gene-tree discordance reflects ancient and recent introgression rather than incomplete lineage sorting. Consistent with abundant introgression blurring the history of divergence, low-recombination and adaptation-associated regions support the new species tree, while high-recombination regions generate phylogenetic evidence for sister status for M. lewisii and M. cardinalis. Population-level sampling of core taxa also revealed two instances of chloroplast capture, with Sierran M. lewisii and Southern Californian M. parishii each carrying organelle genomes nested within respective sympatric M. cardinalis clades. A recent organellar transfer from M. cardinalis, an outcrosser where selfish cytonuclear dynamics are more likely, may account for the unexpected cytoplasmic male sterility effects of selfer M. parishii organelles in hybrids with M. lewisii. Overall, our phylogenomic results reveal extensive reticulation throughout the evolutionary history of a classic monkeyflower radiation, suggesting that natural selection (re-)assembles and maintains species-diagnostic traits and barriers in the face of gene flow. Our findings further underline the challenges, even in reproductively isolated species, in distinguishing re-use of adaptive alleles from true convergence and emphasize the value of a phylogenomic framework for reconstructing the evolutionary genetics of adaptation and speciation.Author SummaryAdaptive radiations, which involve both divergent evolution of new traits and recurrent trait evolution, provide insight into the processes that generate and maintain organismal diversity. However, rapid radiations also generate particular challenges for inferring the evolutionary history and mechanistic basis of adaptation and speciation, as multiple processes can cause different parts of the genome to have distinct phylogenetic trees. Thus, inferences about the mode and timing of divergence and the causes of parallel trait evolution require a fine-grained understanding of the flow of genomic variation through time. In this study, we used genome-wide sampling of thousands of genes to re-construct the evolutionary histories of a model plant radiation, the monkeyflowers of Mimulus section Erythranthe. Work over the past half-century has established the parapatric and putatively sister species M. lewisii (bee-pollinated) and M. cardinalis (hummingbird-pollinated, as are three other species in the section) as textbook examples of both rapid speciation via shifts in pollination syndrome and convergent evolution of floral syndromes. Our phylogenomic analyses re-write both of these stories, placing M. cardinalis in a clade with other hummingbird-pollinated taxa and demonstrating that abundant introgression between ancestral lineages as well as in areas of current sympatry contributes to the real (but misleading) affinities between M. cardinalis and M. lewisii. This work illustrates the pervasive influence of gene flow and introgression during adaptive radiation and speciation, and underlines the necessity of a gene-scale and genome-wide phylogenomics framework for understanding trait divergence, even among well-established species.

PLoS Genetics ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. e1009095
Author(s):  
Thomas C. Nelson ◽  
Angela M. Stathos ◽  
Daniel D. Vanderpool ◽  
Findley R. Finseth ◽  
Yao-wu Yuan ◽  
...  

Inferences about past processes of adaptation and speciation require a gene-scale and genome-wide understanding of the evolutionary history of diverging taxa. In this study, we use genome-wide capture of nuclear gene sequences, plus skimming of organellar sequences, to investigate the phylogenomics of monkeyflowers in Mimulus section Erythranthe (27 accessions from seven species). Taxa within Erythranthe, particularly the parapatric and putatively sister species M. lewisii (bee-pollinated) and M. cardinalis (hummingbird-pollinated), have been a model system for investigating the ecological genetics of speciation and adaptation for over five decades. Across >8000 nuclear loci, multiple methods resolve a predominant species tree in which M. cardinalis groups with other hummingbird-pollinated taxa (37% of gene trees), rather than being sister to M. lewisii (32% of gene trees). We independently corroborate a single evolution of hummingbird pollination syndrome in Erythranthe by demonstrating functional redundancy in genetic complementation tests of floral traits in hybrids; together, these analyses overturn a textbook case of pollination-syndrome convergence. Strong asymmetries in allele-sharing (Patterson’s D-statistic and related tests) indicate that gene-tree discordance reflects ancient and recent introgression rather than incomplete lineage sorting. Consistent with abundant introgression blurring the history of divergence, low-recombination and adaptation-associated regions support the new species tree, while high-recombination regions generate phylogenetic evidence for sister status for M. lewisii and M. cardinalis. Population-level sampling of core taxa also revealed two instances of chloroplast capture, with Sierran M. lewisii and Southern Californian M. parishii each carrying organelle genomes nested within respective sympatric M. cardinalis clades. A recent organellar transfer from M. cardinalis, an outcrosser where selfish cytonuclear dynamics are more likely, may account for the unexpected cytoplasmic male sterility effects of selfer M. parishii organelles in hybrids with M. lewisii. Overall, our phylogenomic results reveal extensive reticulation throughout the evolutionary history of a classic monkeyflower radiation, suggesting that natural selection (re-)assembles and maintains species-diagnostic traits and barriers in the face of gene flow. Our findings further underline the challenges, even in reproductively isolated species, in distinguishing re-use of adaptive alleles from true convergence and emphasize the value of a phylogenomic framework for reconstructing the evolutionary genetics of adaptation and speciation.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (8) ◽  
pp. e1009701
Author(s):  
Yaxuan Wang ◽  
Zhen Cao ◽  
Huw A. Ogilvie ◽  
Luay Nakhleh

Trait evolution among a set of species—a central theme in evolutionary biology—has long been understood and analyzed with respect to a species tree. However, the field of phylogenomics, which has been propelled by advances in sequencing technologies, has ushered in the era of species/gene tree incongruence and, consequently, a more nuanced understanding of trait evolution. For a trait whose states are incongruent with the branching patterns in the species tree, the same state could have arisen independently in different species (homoplasy) or followed the branching patterns of gene trees, incongruent with the species tree (hemiplasy). Another evolutionary process whose extent and significance are better revealed by phylogenomic studies is gene flow between different species. In this work, we present a phylogenomic method for assessing the role of hybridization and introgression in the evolution of polymorphic or monomorphic binary traits. We apply the method to simulated evolutionary scenarios to demonstrate the interplay between the parameters of the evolutionary history and the role of introgression in a binary trait’s evolution (which we call xenoplasy). Very importantly, we demonstrate, including on a biological data set, that inferring a species tree and using it for trait evolution analysis in the presence of gene flow could lead to misleading hypotheses about trait evolution.


2018 ◽  
Author(s):  
Julie Marin ◽  
Guillaume Achaz ◽  
Anton Crombach ◽  
Amaury Lambert

AbstractEvolutionary relationships between species are traditionally represented in the form of a tree, the species tree. Its reconstruction from molecular data is hindered by frequent conflicts between gene genealogies. Usually, these disagreements are explained by incomplete lineage sorting (ILS) due to random coalescences of gene lineages inside the edges of the species tree. This paradigm, the multi-species coalescent (MSC), is constantly violated by the ubiquitous presence of gene flow, leading to incongruences between gene trees that cannot be explained by ILS alone. Here we argue instead in favor of a vision acknowledging the importance of gene flow and where gene histories shape the species tree rather than the opposite. We propose a new framework for modeling the joint evolution of gene and species lineages relaxing the hierarchy between the species tree and gene trees. We implement this framework in two mathematical models called the gene-based diversification models (GBD): 1) GBD-forward following all evolving genomes and 2) GBD-backward based on coalescent theory. They feature four parameters tuning colonization, gene flow, genetic drift and genetic differentiation. We propose a quick inference method based on differences between gene trees. Applied to two empirical data-sets prone to gene flow, we find a better support for the GBD model than for the MSC model. Along with the increasing awareness of the extent of gene flow, this work shows the importance of considering the richer signal contained in genomic histories, rather than in the mere species tree, to better apprehend the complex evolutionary history of species.


2020 ◽  
Author(s):  
Jordan D. Satler ◽  
Edward Allen Herre ◽  
Tracy A. Heath ◽  
Carlos A. Machado ◽  
Adalberto Gómez Zúñiga ◽  
...  

AbstractInteractions between plants and their animal pollinators can shape processes of divergence and gene flow within associated lineages. For example, in the obligate mutualism between figs (Ficus) and fig pollinator wasps (family Agaonidae), each wasp species typically pollinates a single fig species, potentially reinforcing reproductive isolation among different wasp species. Multiple pollinator species, however, can sometimes reproduce in the same host fig species, potentially enabling hybridization and introgression between wasp species. In a community of Panamanian strangler figs (section Americana), we use genome-wide ultraconserved element (UCE) loci to estimate phylogenetic relationships and test for hybridization and gene flow among 19 pollinator species associated with 16 host fig species. Previous studies showing ongoing pollinator sharing and a history of pollinator host switching are consistent with documented genetic admixture in their host figs. Here we investigate if host sharing and a dynamic evolutionary history including host switching has also resulted in hybridization and gene flow between pollinator species. Phylogenetic analyses recover strong support for well-delimited wasp species coupled with high interspecific divergence. There is no evidence for ongoing hybridization or introgression, even among pairs of pollinator species currently reproducing within the same host. In contrast to work suggesting admixture among Panamanian host figs, we conclude hybridization and interspecific gene flow have not been important processes shaping the evolutionary history of their pollinating wasps.


2005 ◽  
Vol preprint (2007) ◽  
pp. e137
Author(s):  
Joti Giordano ◽  
Yongchao Ge ◽  
Yevgeniy Gelfand ◽  
Gyorgy Abrusan ◽  
Gary Benson ◽  
...  

2019 ◽  
Vol 125 (3) ◽  
pp. 495-507 ◽  
Author(s):  
Francisco Balao ◽  
María Teresa Lorenzo ◽  
José Manuel Sánchez-Robles ◽  
Ovidiu Paun ◽  
Juan Luis García-Castaño ◽  
...  

Abstract Background and Aims Inferring the evolutionary relationships of species and their boundaries is critical in order to understand patterns of diversification and their historical drivers. Despite Abies (Pinaceae) being the second most diverse group of conifers, the evolutionary history of Circum-Mediterranean firs (CMFs) remains under debate. Methods We used restriction site-associated DNA sequencing (RAD-seq) on all proposed CMF taxa to investigate their phylogenetic relationships and taxonomic status. Key Results Based on thousands of genome-wide single nucleotide polymorphisms (SNPs), we present here the first formal test of species delimitation, and the first fully resolved, complete species tree for CMFs. We discovered that all previously recognized taxa in the Mediterranean should be treated as independent species, with the exception of Abies tazaotana and Abies marocana. An unexpectedly early pulse of speciation in the Oligocene–Miocene boundary is here documented for the group, pre-dating previous hypotheses by millions of years, revealing a complex evolutionary history encompassing both ancient and recent gene flow between distant lineages. Conclusions Our phylogenomic results contribute to shed light on conifers’ diversification. Our efforts to resolve the CMF phylogenetic relationships help refine their taxonomy and our knowledge of their evolution.


2016 ◽  
Vol 26 (2) ◽  
pp. 639-652 ◽  
Author(s):  
Moisés A. Bernal ◽  
Michelle R. Gaither ◽  
W. Brian Simison ◽  
Luiz A. Rocha

Diversity ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 126 ◽  
Author(s):  
Wilson X. Guillory ◽  
Morgan R. Muell ◽  
Kyle Summers ◽  
Jason L. Brown

The evolutionary history of the Dendrobatidae, the charismatic Neotropical poison frog family, remains in flux, even after a half-century of intensive research. Understanding the evolutionary relationships between dendrobatid genera and the larger-order groups within Dendrobatidae is critical for making accurate assessments of all aspects of their biology and evolution. In this study, we provide the first phylogenomic reconstruction of Dendrobatidae with genome-wide nuclear markers known as ultraconserved elements. We performed sequence capture on 61 samples representing 33 species across 13 of the 16 dendrobatid genera, aiming for a broadly representative taxon sample. We compare topologies generated using maximum likelihood and coalescent methods and estimate divergence times using Bayesian methods. We find most of our dendrobatid tree to be consistent with previously published results based on mitochondrial and low-count nuclear data, with notable exceptions regarding the placement of Hyloxalinae and certain genera within Dendrobatinae. We also characterize how the evolutionary history and geographic distributions of the 285 poison frog species impact their conservation status. We hope that our phylogeny will serve as a backbone for future evolutionary studies and that our characterizations of conservation status inform conservation practices while highlighting taxa in need of further study.


Sign in / Sign up

Export Citation Format

Share Document