PLoS Computational Biology
Latest Publications


TOTAL DOCUMENTS

9022
(FIVE YEARS 2504)

H-INDEX

177
(FIVE YEARS 22)

Published By Public Library Of Science

1553-7358, 1553-734x

2022 ◽  
Vol 18 (1) ◽  
pp. e1009733
Author(s):  
Jann Paul Mattern ◽  
Kristof Glauninger ◽  
Gregory L. Britten ◽  
John R. Casey ◽  
Sangwon Hyun ◽  
...  

The rates of cell growth, division, and carbon loss of microbial populations are key parameters for understanding how organisms interact with their environment and how they contribute to the carbon cycle. However, the invasive nature of current analytical methods has hindered efforts to reliably quantify these parameters. In recent years, size-structured matrix population models (MPMs) have gained popularity for estimating division rates of microbial populations by mechanistically describing changes in microbial cell size distributions over time. Motivated by the mechanistic structure of these models, we employ a Bayesian approach to extend size-structured MPMs to capture additional biological processes describing the dynamics of a marine phytoplankton population over the day-night cycle. Our Bayesian framework is able to take prior scientific knowledge into account and generate biologically interpretable results. Using data from an exponentially growing laboratory culture of the cyanobacterium Prochlorococcus, we isolate respiratory and exudative carbon losses as critical parameters for the modeling of their population dynamics. The results suggest that this modeling framework can provide deeper insights into microbial population dynamics provided by size distribution time-series data.


2022 ◽  
Vol 18 (1) ◽  
pp. e1009779
Author(s):  
Joanna E. Handzlik ◽  
Manu

Cellular differentiation during hematopoiesis is guided by gene regulatory networks (GRNs) comprising transcription factors (TFs) and the effectors of cytokine signaling. Based largely on analyses conducted at steady state, these GRNs are thought to be organized as a hierarchy of bistable switches, with antagonism between Gata1 and PU.1 driving red- and white-blood cell differentiation. Here, we utilize transient gene expression patterns to infer the genetic architecture—the type and strength of regulatory interconnections—and dynamics of a twelve-gene GRN including key TFs and cytokine receptors. We trained gene circuits, dynamical models that learn genetic architecture, on high temporal-resolution gene-expression data from the differentiation of an inducible cell line into erythrocytes and neutrophils. The model is able to predict the consequences of gene knockout, knockdown, and overexpression experiments and the inferred interconnections are largely consistent with prior empirical evidence. The inferred genetic architecture is densely interconnected rather than hierarchical, featuring extensive cross-antagonism between genes from alternative lineages and positive feedback from cytokine receptors. The analysis of the dynamics of gene regulation in the model reveals that PU.1 is one of the last genes to be upregulated in neutrophil conditions and that the upregulation of PU.1 and other neutrophil genes is driven by Cebpa and Gfi1 instead. This model inference is confirmed in an independent single-cell RNA-Seq dataset from mouse bone marrow in which Cebpa and Gfi1 expression precedes the neutrophil-specific upregulation of PU.1 during differentiation. These results demonstrate that full PU.1 upregulation during neutrophil development involves regulatory influences extrinsic to the Gata1-PU.1 bistable switch. Furthermore, although there is extensive cross-antagonism between erythroid and neutrophil genes, it does not have a hierarchical structure. More generally, we show that the combination of high-resolution time series data and data-driven dynamical modeling can uncover the dynamics and causality of developmental events that might otherwise be obscured.


2022 ◽  
Vol 18 (1) ◽  
pp. e1009755
Author(s):  
Xiangyu Kuang ◽  
Guoye Guan ◽  
Ming-Kin Wong ◽  
Lu-Yan Chan ◽  
Zhongying Zhao ◽  
...  

Morphogenesis is a precise and robust dynamic process during metazoan embryogenesis, consisting of both cell proliferation and cell migration. Despite the fact that much is known about specific regulations at molecular level, how cell proliferation and migration together drive the morphogenesis at cellular and organismic levels is not well understood. Using Caenorhabditis elegans as the model animal, we present a phase field model to compute early embryonic morphogenesis within a confined eggshell. With physical information about cell division obtained from three-dimensional time-lapse cellular imaging experiments, the model can precisely reproduce the early morphogenesis process as seen in vivo, including time evolution of location and morphology of each cell. Furthermore, the model can be used to reveal key cell-cell attractions critical to the development of C. elegans embryo. Our work demonstrates how genetic programming and physical forces collaborate to drive morphogenesis and provides a predictive model to decipher the underlying mechanism.


2022 ◽  
Vol 18 (1) ◽  
pp. e1009702
Author(s):  
Ulrike Münzner ◽  
Tomoya Mori ◽  
Marcus Krantz ◽  
Edda Klipp ◽  
Tatsuya Akutsu

Boolean networks (BNs) have been developed to describe various biological processes, which requires analysis of attractors, the long-term stable states. While many methods have been proposed to detection and enumeration of attractors, there are no methods which have been demonstrated to be theoretically better than the naive method and be practically used for large biological BNs. Here, we present a novel method to calculate attractors based on a priori information, which works much and verifiably faster than the naive method. We apply the method to two BNs which differ in size, modeling formalism, and biological scope. Despite these differences, the method presented here provides a powerful tool for the analysis of both networks. First, our analysis of a BN studying the effect of the microenvironment during angiogenesis shows that the previously defined microenvironments inducing the specialized phalanx behavior in endothelial cells (ECs) additionally induce stalk behavior. We obtain this result from an extended network version which was previously not analyzed. Second, we were able to heuristically detect attractors in a cell cycle control network formalized as a bipartite Boolean model (bBM) with 3158 nodes. These attractors are directly interpretable in terms of genotype-to-phenotype relationships, allowing network validation equivalent to an in silico mutagenesis screen. Our approach contributes to the development of scalable analysis methods required for whole-cell modeling efforts.


2022 ◽  
Vol 18 (1) ◽  
pp. e1009394
Author(s):  
Yushi Yang ◽  
Francesco Turci ◽  
Erika Kague ◽  
Chrissy L. Hammond ◽  
John Russo ◽  
...  

Collective behaviour in living systems is observed across many scales, from bacteria to insects, to fish shoals. Zebrafish have emerged as a model system amenable to laboratory study. Here we report a three-dimensional study of the collective dynamics of fifty zebrafish. We observed the emergence of collective behaviour changing between ordered to randomised, upon adaptation to new environmental conditions. We quantify the spatial and temporal correlation functions of the fish and identify two length scales, the persistence length and the nearest neighbour distance, that capture the essence of the behavioural changes. The ratio of the two length scales correlates robustly with the polarisation of collective motion that we explain with a reductionist model of self–propelled particles with alignment interactions.


2022 ◽  
Vol 18 (1) ◽  
pp. e1009738
Author(s):  
William Turner ◽  
Daniel Feuerriegel ◽  
Robert Hester ◽  
Stefan Bode

We often need to rapidly change our mind about perceptual decisions in order to account for new information and correct mistakes. One fundamental, unresolved question is whether information processed prior to a decision being made (‘pre-decisional information’) has any influence on the likelihood and speed with which that decision is reversed. We investigated this using a luminance discrimination task in which participants indicated which of two flickering greyscale squares was brightest. Following an initial decision, the stimuli briefly remained on screen, and participants could change their response. Using psychophysical reverse correlation, we examined how moment-to-moment fluctuations in stimulus luminance affected participants’ decisions. This revealed that the strength of even the very earliest (pre-decisional) evidence was associated with the likelihood and speed of later changes of mind. To account for this effect, we propose an extended diffusion model in which an initial ‘snapshot’ of sensory information biases ongoing evidence accumulation.


2022 ◽  
Vol 18 (1) ◽  
pp. e1009628
Author(s):  
Zhi Ming Xu ◽  
Sina Rüeger ◽  
Michaela Zwyer ◽  
Daniela Brites ◽  
Hellen Hiza ◽  
...  

Genome-wide association studies rely on the statistical inference of untyped variants, called imputation, to increase the coverage of genotyping arrays. However, the results are often suboptimal in populations underrepresented in existing reference panels and array designs, since the selected single nucleotide polymorphisms (SNPs) may fail to capture population-specific haplotype structures, hence the full extent of common genetic variation. Here, we propose to sequence the full genomes of a small subset of an underrepresented study cohort to inform the selection of population-specific add-on tag SNPs and to generate an internal population-specific imputation reference panel, such that the remaining array-genotyped cohort could be more accurately imputed. Using a Tanzania-based cohort as a proof-of-concept, we demonstrate the validity of our approach by showing improvements in imputation accuracy after the addition of our designed add-on tags to the base H3Africa array.


2022 ◽  
Vol 18 (1) ◽  
pp. e1009780
Author(s):  
Le Khanh Ngan Nguyen ◽  
Itamar Megiddo ◽  
Susan Howick

Although system dynamics [SD] and agent-based modelling [ABM] have individually served as effective tools to understand the Covid-19 dynamics, combining these methods in a hybrid simulation model can help address Covid-19 questions and study systems and settings that are difficult to study with a single approach. To examine the spread and outbreak of Covid-19 across multiple care homes via bank/agency staff and evaluate the effectiveness of interventions targeting this group, we develop an integrated hybrid simulation model combining the advantages of SD and ABM. We also demonstrate how we use several approaches adapted from both SD and ABM practices to build confidence in this model in response to the lack of systematic approaches to validate hybrid models. Our modelling results show that the risk of infection for residents in care homes using bank/agency staff was significantly higher than those not using bank/agency staff (Relative risk [RR] 2.65, 95% CI 2.57–2.72). Bank/agency staff working across several care homes had a higher risk of infection compared with permanent staff working in a single care home (RR 1.55, 95%CI 1.52–1.58). The RR of infection for residents is negatively correlated to bank/agency staff’s adherence to weekly PCR testing. Within a network of heterogeneous care homes, using bank/agency staff had the most impact on care homes with lower intra-facility transmission risks, higher staff-to-resident ratio, and smaller size. Forming bubbles of care homes had no or limited impact on the spread of Covid-19. This modelling study has implications for policy makers considering developing effective interventions targeting staff working across care homes during the ongoing and future pandemics.


2022 ◽  
Vol 18 (1) ◽  
pp. e1009610
Author(s):  
Arno Strouwen ◽  
Bart M. Nicolaï ◽  
Peter Goos

Dynamic models based on non-linear differential equations are increasingly being used in many biological applications. Highly informative dynamic experiments are valuable for the identification of these dynamic models. The storage of fresh fruit and vegetables is one such application where dynamic experimentation is gaining momentum. In this paper, we construct optimal O2 and CO2 gas input profiles to estimate the respiration and fermentation kinetics of pear fruit. The optimal input profiles, however, depend on the true values of the respiration and fermentation parameters. Locally optimal design of input profiles, which uses a single initial guess for the parameters, is the traditional method to deal with this issue. This method, however, is very sensitive to the initial values selected for the model parameters. Therefore, we present a robust experimental design approach that can handle uncertainty on the model parameters.


2022 ◽  
Vol 18 (1) ◽  
pp. e1009634
Author(s):  
Georgy Antonov ◽  
Christopher Gagne ◽  
Eran Eldar ◽  
Peter Dayan

The replay of task-relevant trajectories is known to contribute to memory consolidation and improved task performance. A wide variety of experimental data show that the content of replayed sequences is highly specific and can be modulated by reward as well as other prominent task variables. However, the rules governing the choice of sequences to be replayed still remain poorly understood. One recent theoretical suggestion is that the prioritization of replay experiences in decision-making problems is based on their effect on the choice of action. We show that this implies that subjects should replay sub-optimal actions that they dysfunctionally choose rather than optimal ones, when, by being forgetful, they experience large amounts of uncertainty in their internal models of the world. We use this to account for recent experimental data demonstrating exactly pessimal replay, fitting model parameters to the individual subjects’ choices.


Sign in / Sign up

Export Citation Format

Share Document