Notch signaling is a critical initiator of roof plate formation as revealed by the use of RNA profiling of the dorsal neural tube
AbstractThe factors underlying establishment of the definitive roof plate (RP) and its segregation from neural crest (NC) and interneurons are unknown. We performed transcriptome analysis at trunk levels of quail embryos comparing the dorsal neural tube at premigratory NC and RP stages. This unraveled molecular heterogeneity between NC and RP stages, and within the RP itself. By implementing these genes, we asked whether Notch signaling is involved in RP development. First, we observed that Notch is active at the RP-interneuron interface. Furthermore, gain and loss of Notch function in quail and mouse embryos, respectively, revealed no effect on early NC behavior. Constitutive Notch activation caused a local downregulation of RP markers with a concomitant development of dI1 interneurons, as well as an ectopic upregulation of RP markers in the interneuron domain. Reciprocally, in mice lacking Notch activity both the RP and dI1 interneurons failed to form and this was associated with expansion of the dI2 population. Collectively, our results offer a new resource for defining specific cell types, and provide evidence that Notch is required to establish the definitive RP, and to determine the choice between RP and interneuron fates, but not the segregation of RP from NC.Summary statementA new set of genes involved in Notch-dependent roof plate formation is unraveled by transcriptome analysis.