scholarly journals A method to study honeybee foraging regulatory molecules at different times during foraging

2021 ◽  
Author(s):  
Asem Surindro Singh ◽  
Machathoibi Chanu Takhellambam

The foraging of honey bees is one of the most well organized and admirable behaviors that exist among social insects. In behavioral studies, these beautiful insects have been extensively used for understanding time-space learning, landmark use and concept of learning etc. Highly organized behaviors such as social interaction and communication are systematically well organized behavioral components of honeybee foraging. Over the last two decades, understanding the regulatory mechanisms underlying honey bee foraging at the cellular and molecular levels has been increasingly interested to several researchers. Upon the search of regulatory genes of brain and behavior, immediate early (IE) genes are considered as tool to begin the investigation. Our two recent studies, have demonstrated three IE genes namely Egr-1, Hr38 and kakusei having a role in the daily foraging of bees and their association with learning and memory during the foraging. These studies further evidence that IE genes can be used as a tool in finding the specific molecular/cellular players of foraging in honey bees and its behavioral components such as learning, memory, social interaction, social communication etc. In this article we provide the details of the method of sample collection at different times during foraging to investigate the foraging regulatory molecules. Key words: Honey bee foraging, learning and memory, immediate early genes, Egr-1, Hr38, Kakusei.

2021 ◽  
Vol 1 ◽  
Author(s):  
Asem Surindro Singh ◽  
Machathoibi Chanu Takhellambam

The foraging of honey bees is one of the most well-organized and admirable behaviors that exist among social insects. In behavioral studies, these beautiful insects have been extensively used for understanding time–space learning, landmark use, and the concept of learning. Highly organized behaviors such as social interaction and communication are systematically well-organized behavioral components of honey bee foraging. Over the last two decades, understanding the regulatory mechanisms underlying honey bee foraging at the cellular and molecular levels has been increasingly interested to several researchers. Upon the search of regulatory genes of brain and behavior, immediate early (IE) genes are considered as a good tool to begin the search investigation. Our two recent studies have demonstrated three IE genes, namely, Egr-1, Hr38, and Kakusei, playing a role in the daily foraging of bees and their association with learning and memory during foraging. These studies further evidence that IE genes can be used as a tool in finding the specific molecular/cellular players of foraging in honey bees and its behavioral components such as learning, memory, social interaction, and social communication. In this article, we provide the details of the method of sample collection at different times during foraging to investigate the foraging regulatory molecules.


1979 ◽  
Vol 111 (10) ◽  
pp. 1131-1135 ◽  
Author(s):  
R.H. Elliott ◽  
D. Cmiralova ◽  
W.G. Wellington

AbstractForaging honey bees were offered various sucrose–herbicide solutions. Despite the visual attractiveness of the feeding dishes to foragers, six of seven herbicides significantly reduced the incidence of feeding and were judged to be olfactory and gustatory repellents. The most repellent herbicide was 2,4,5-T, which totally inhibited feeding at concentrations as tow as 1000 ppm. The next most repellent was 2,4-DB, followed by linuron, picloram, 2,4-D, and monuron. Paraquat was the only herbicide that did not exhibit marked repellency at concentrations up to 4000 ppm.The implications of these findings are discussed in terms of the impact of herbicide applications on honey bee foraging behaviour, brood development, pollination, and honey production.


Author(s):  
MS Hossain ◽  
JK Paul ◽  
MM Rahman ◽  
MU Fazlullah ◽  
S Sarkar

The study was conducted in the field at Nagarpur, Tangail, Bangladesh, from November 2016 to February 2017 to find out the role of honey bees on mustard yield. Honey bee (Apis mellifera) was the main insect pollinator during mustard flowering season. Mustard seeds of variety Tori-7 were selected for this experiment. Three different treatments were used, viz. control, netting with honey bees and netting without honey bees. Honey bees helped mustard pollination, but decreased the flowering period (6 days) of the mustard plant. Honey bees assisted the pollination of mustard and increased the number of pod per plant (14%) as well as the number of seeds per pod (11%). Honey bees enhanced the pollination of mustard plant, and netting with honey bees increased the mean seed yield (15%) per plant of mustard, however, decreased the period of flowering stage of mustard. Mustard yield was considerably higher in honey bee foraging plots. J. Biodivers. Conserv. Bioresour. Manag. 2020, 6(1): 25-30


Insects ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 34 ◽  
Author(s):  
Ann Gaffney ◽  
Björn Bohman ◽  
Stephen Quarrell ◽  
Philip Brown ◽  
Geoff Allen

Pollination rates in hybrid carrot crops remain limited after introduction of honey bee hives. In this study, honey bee foraging behaviour was observed in commercial hybrid carrot seed crops. Significantly more visits were made to male-fertile (MF) rather than cytoplasmically male-sterile (CMS) flowers. Pollen was collected from bees returning to a hive, to determine daily variation in pollen loads collected and to what level the bees were foraging for carrot pollen. Honey bees visited a wide range of alternative pollen sources and made relatively few visits to carrot plants throughout the period of flowering. Visitation rates to other individual floral sources fluctuated but visitation to carrot was consistently low. The underlying rate of carrot pollen visits among collecting trips was modelled and estimated to be as low as 1.4%, a likely cause of the limited success implementing honey bee hives in carrot crops.


2018 ◽  
Vol 27 (2) ◽  
pp. 349-360 ◽  
Author(s):  
Bahram Kheradmand ◽  
Julian Cassano ◽  
Selena Gray ◽  
James C. Nieh

Sign in / Sign up

Export Citation Format

Share Document