scholarly journals Functional characterization of SARS-CoV-2 vaccine elicited antibodies in immunologically naive and pre-immune humans

2021 ◽  
Author(s):  
David Forgacs ◽  
Hyesun Jang ◽  
Rodrigo B Abreu ◽  
Hannah B Hanley ◽  
Jasper L Gattiker ◽  
...  

As the COVID-19 pandemic continues, the authorization of vaccines for emergency use has been crucial in slowing down the rate of infection and transmission of the SARS-CoV-2 virus that causes COVID-19. In order to investigate the longitudinal serological responses to SARS-CoV-2 natural infection and vaccination, a large-scale, multi-year serosurveillance program entitled SPARTA (SARS SeroPrevalence and Respiratory Tract Assessment) was initiated at 4 locations in the U.S. The serological assay presented here measuring IgG binding to the SARS-CoV-2 receptor binding domain (RBD) detected antibodies elicited by SARS-CoV-2 infection or vaccination with a 95.5% sensitivity and a 95.9% specificity. We used this assay to screen more than 3100 participants and selected 20 previously infected pre-immune and 32 immunologically naive participants to analyze their antibody binding to RBD and viral neutralization (VN) responses following vaccination with two doses of either the Pfizer-BioNTech BNT162b2 or the Moderna mRNA-1273 vaccine. Vaccination not only elicited a more robust immune reaction than natural infection, but the level of neutralizing and anti-RBD antibody binding after vaccination is also significantly higher in pre-immune participants compared to immunologically naive participants (p<0.0033). Furthermore, the administration of the second vaccination did not further increase the neutralizing or binding antibody levels in pre-immune participants (p=0.69). However, ~46% of the immunologically naive participants required both vaccinations to seroconvert.

2021 ◽  
Vol 12 ◽  
Author(s):  
David Forgacs ◽  
Hyesun Jang ◽  
Rodrigo B. Abreu ◽  
Hannah B. Hanley ◽  
Jasper L. Gattiker ◽  
...  

As the COVID-19 pandemic continues, the authorization of vaccines for emergency use has been crucial in slowing down the rate of infection and transmission of the SARS-CoV-2 virus that causes COVID-19. In order to investigate the longitudinal serological responses to SARS-CoV-2 natural infection and vaccination, a large-scale, multi-year serosurveillance program entitled SPARTA (SARS SeroPrevalence and Respiratory Tract Assessment) was initiated at 4 locations in the U.S. The serological assay presented here measuring IgG binding to the SARS-CoV-2 receptor binding domain (RBD) detected antibodies elicited by SARS-CoV-2 infection or vaccination with a 95.5% sensitivity and a 95.9% specificity. We used this assay to screen more than 3100 participants and selected 20 previously infected pre-immune and 32 immunologically naïve participants to analyze their antibody binding to RBD and viral neutralization (VN) responses following vaccination with two doses of either the Pfizer-BioNTech BNT162b2 or the Moderna mRNA-1273 vaccine. Vaccination not only elicited a more robust immune reaction than natural infection, but the level of neutralizing and anti-RBD antibody binding after vaccination is also significantly higher in pre-immune participants compared to immunologically naïve participants (p&lt;0.0033). Furthermore, the administration of the second vaccination did not further increase the neutralizing or binding antibody levels in pre-immune participants (p=0.69). However, ~46% of the immunologically naïve participants required both vaccinations to seroconvert.


2019 ◽  
Vol 116 (18) ◽  
pp. 8960-8965 ◽  
Author(s):  
Michael Hicks ◽  
Istvan Bartha ◽  
Julia di Iulio ◽  
J. Craig Venter ◽  
Amalio Telenti

Sequence variation data of the human proteome can be used to analyze 3D protein structures to derive functional insights. We used genetic variant data from nearly 140,000 individuals to analyze 3D positional conservation in 4,715 proteins and 3,951 homology models using 860,292 missense and 465,886 synonymous variants. Sixty percent of protein structures harbor at least one intolerant 3D site as defined by significant depletion of observed over expected missense variation. Structural intolerance data correlated with deep mutational scanning functional readouts for PPARG, MAPK1/ERK2, UBE2I, SUMO1, PTEN, CALM1, CALM2, and TPK1 and with shallow mutagenesis data for 1,026 proteins. The 3D structural intolerance analysis revealed different features for ligand binding pockets and orthosteric and allosteric sites. Large-scale data on human genetic variation support a definition of functional 3D sites proteome-wide.


Author(s):  
Johan O. L. Andreasson ◽  
Michael R. Gotrik ◽  
Michelle J. Wu ◽  
Hannah K. Wayment-Steele ◽  
Wipapat Kladwang ◽  
...  

AbstractInternet-based scientific communities promise a means to apply distributed, diverse human intelligence towards previously intractable scientific problems. However, current implementations have not allowed communities to propose experiments to test all emerging hypotheses at scale or to modify hypotheses in response to experiments. We report high-throughput methods for molecular characterization of nucleic acids that enable the large-scale videogame-based crowdsourcing of functional RNA sensor design, followed by high-throughput functional characterization. Iterative design testing of thousands of crowdsourced RNA sensor designs produced near-thermodynamically optimal and reversible RNA switches that act as self-contained molecular sensors and couple five distinct small molecule inputs to three distinct protein binding and fluorogenic outputs—results that surpass computational and expert-based design. This work represents a new paradigm for widely distributed experimental bioscience.One Sentence SummaryOnline community discovers standalone RNA sensors.


2019 ◽  
Author(s):  
Doreen Schultz ◽  
Daniela Zühlke ◽  
Jörg Bernhardt ◽  
Thomas Ben Francis ◽  
Dirk Albrecht ◽  
...  

SummaryThis study aimed to establish a robust, reproducible and reliable metaproteomic pipeline for an in-depth characterization of marine particle-associated (PA) bacteria. To this end, we compared six well-established protein extraction protocols together with different MS-sample preparation techniques using particles sampled during a North Sea spring algae bloom in 2009. In this optimized workflow, proteins are extracted using a combination of SDS-containing lysis buffer and cell disruption by bead-beating, separated by SDS-PAGE, in-gel digested and analysed by LC-MS/MS, before MASCOT search against a metagenome-based database and data processing/visualization with the in-house-developed bioinformatics tools Prophane and Paver.As proof of principle, free-living (FL) and particulate communities sampled in April 2009 were analysed, resulting in an as yet unprecedented number of 9,354 and 5,034 identified protein groups for FL and PA bacteria, respectively. Our data revealed that FL and PA communities appeared similar in their taxonomic distribution, with notable exceptions: eukaryotic proteins and proteins assigned to Flavobacteriia, Cyanobacteria, and some proteobacterial genera were found more abundant on particles, whilst overall proteins belonging to Proteobacteria were more dominant in the FL fraction. In contrast, significant functional differences including proteins involved in polysaccharide degradation, sugar- and phosphorus uptake, adhesion, motility, and stress response were detected.Originality-Significance StatementMarine particles consist of organic particulate matter (e.g. phyto- or zooplankton) and particle-associated (PA) microbial communities, which are often embedded in a sugary matrix. A significant fraction of the decaying algal biomass in marine ecosystems is expected to be mineralized by PA heterotrophic communities, which are thus greatly contributing to large-scale carbon fluxes. Whilst numerous studies have investigated the succession of planktonic marine bacteria along phytoplankton blooms, the community structure and functionality of PA bacterial communities remained largely unexplored and knowledge on specific contributions of these microorganisms to carbon cycling is still surprisingly limited. This has been mostly been due to technical problems, i.e. to the difficulty to retrieve genomic DNA and proteins from these polysaccharide-rich entities, their enormous complexity and the high abundance of eukaryotic microorganisms.Our study presents an innovative, robust, reproducible, and reliable metaproteomics pipeline for marine particles, which will help to address and fill the above-described knowledge gap. Employing the here established workflow enabled us to identify more than 5,000 PA proteins, which is, at least to our knowledge, the largest number of protein groups ever assigned to marine particles. Notably, the novel pipeline has been validated by a first, comparative metaproteome analysis of free-living and PA bacterial communities indicating a significant functional shift enabling surface-associated bacteria to adapt to particle-specific living conditions. In conclusion, our novel metaproteomics pipeline presents a solid and promising methodological groundwork for future culture-independent analyses of seasonal taxonomic and functional successions of PA microbial communities in aquatic habitats.


2021 ◽  
Author(s):  
Calvin P Sjaarda ◽  
Emily Moslinger ◽  
Kyla Tozer ◽  
Robert I Colautti ◽  
Samira Kheitan ◽  
...  

Background. Antibody responses to SARS-CoV-2 can be observed as early as 14 days post- infection, but little is known about the stability of antibody levels over time. Here we evaluate the long-term stability of anti-SARS-CoV-2 IgG antibodies following infection in 402 adult donors. Methods. We performed a multi-centre study carried out at Plasma Donor Centres in the city of Heidelberg (Plasmazentrum Heidelberg, Germany) and Munich (Plasmazentrum M&uumlnchen, Germany). We present anti-S/N and anti-N IgG antibody levels in prospective serum samples collected up to 403 days post recovery from SARS-CoV-2 infected individuals. Results: The cohort includes 402 adult donors (185 female, 217 male; 17 - 68 years of age) where anti-SARS-CoV-2 IgG levels were measured in plasma samples collected between 18- and 403-days post SARS-CoV-2 infection. A linear mixed effects model demonstrated IgG decay rates that decrease over time (χ2=176.8, p<0.00001) and an interaction of time*age (χ2=10.0, p<0.005)), with those over 60+ years showing the highest baseline IgG levels and the fastest rate of IgG decay. Baseline viral neutralization assays demonstrated that serum IgG levels correlated with in vitro neutralization capacity in 91% of our cohort. Conclusion. Long-term antibody levels and age-specific antibody decay rates suggest the potential need for age-specific vaccine booster guidelines to ensure long term vaccine protection against SARS-CoV-2 infection.


2021 ◽  
Vol 22 (20) ◽  
pp. 11205
Author(s):  
Ziwei Li ◽  
Peng Tian ◽  
Tengbo Huang ◽  
Jianzi Huang

Macronutrient elements including nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and sulfur (S) are required in relatively large and steady amounts for plant growth and development. Deficient or excessive supply of macronutrients from external environments may trigger a series of plant responses at phenotypic and molecular levels during the entire life cycle. Among the intertwined molecular networks underlying plant responses to macronutrient stress, noncoding RNAs (ncRNAs), mainly microRNAs (miRNAs) and long ncRNAs (lncRNAs), may serve as pivotal regulators for the coordination between nutrient supply and plant demand, while the responsive ncRNA-target module and the interactive mechanism vary among elements and species. Towards a comprehensive identification and functional characterization of nutrient-responsive ncRNAs and their downstream molecules, high-throughput sequencing has produced massive omics data for comparative expression profiling as a first step. In this review, we highlight the recent findings of ncRNA-mediated regulation in response to macronutrient stress, with special emphasis on the large-scale sequencing efforts for screening out candidate nutrient-responsive ncRNAs in plants, and discuss potential improvements in theoretical study to provide better guidance for crop breeding practices.


2021 ◽  
Vol 15 (10) ◽  
pp. e0009911
Author(s):  
Yi Yang ◽  
Yifan He ◽  
Guoding Zhu ◽  
Jilei Zhang ◽  
Zaicheng Gong ◽  
...  

Wolbachia are maternally transmitted intracellular bacteria that can naturally and artificially infect arthropods and nematodes. Recently, they were applied to control the spread of mosquito-borne pathogens by causing cytoplasmic incompatibility (CI) between germ cells of females and males. The ability of Wolbachia to induce CI is based on the prevalence and polymorphism of Wolbachia in natural populations of mosquitoes. In this study, we screened the natural infection level and diversity of Wolbachia in field-collected mosquitoes from 25 provinces of China based on partial sequence of Wolbachia surface protein (wsp) gene and multilocus sequence typing (MLST). Among the samples, 2489 mosquitoes were captured from 24 provinces between July and September, 2014 and the remaining 1025 mosquitoes were collected month-by-month in Yangzhou, Jiangsu province between September 2013 and August 2014. Our results showed that the presence of Wolbachia was observed in mosquitoes of Aedes albopictus (97.1%, 331/341), Armigeres subalbatus (95.8%, 481/502), Culex pipiens (87.0%, 1525/1752), Cx. tritaeniorhynchus (17.1%, 14/82), but not Anopheles sinensis (n = 88). Phylogenetic analysis indicated that high polymorphism of wsp and MLST loci was observed in Ae. albopictus mosquitoes, while no or low polymorphisms were in Ar. subalbatus and Cx. pipiens mosquitoes. A total of 12 unique mutations of deduced amino acid were identified in the wsp sequences obtained in this study, including four mutations in Wolbachia supergroup A and eight mutations in supergroup B. This study revealed the prevalence and polymorphism of Wolbachia in mosquitoes in large-scale regions of China and will provide some useful information when performing Wolbachia-based mosquito biocontrol strategies in China.


2019 ◽  
Author(s):  
Husen M. Umer ◽  
Karolina Smolinska-Garbulowska ◽  
Nour-al-dain Marzouka ◽  
Zeeshan Khaliq ◽  
Claes Wadelius ◽  
...  

ABSTRACTTranscription factors (TF) regulate gene expression by binding to specific sequences known as motifs. A bottleneck in our knowledge of gene regulation is the lack of functional characterization of TF motifs, which is mainly due to the large number of predicted TF motifs, and tissue specificity of TF binding. We built a framework to identify tissue-specific functional motifs (funMotifs) across the genome based on thousands of annotation tracks obtained from large-scale genomics projects including ENCODE, RoadMap Epigenomics and FANTOM. The annotations were weighted using a logistic regression model trained on regulatory elements obtained from massively parallel reporter assays. Overall, genome-wide predicted motifs of 519 TFs were characterized across fifteen tissue types. funMotifs summarizes the weighted annotations into a functional activity score for each of the predicted motifs. funMotifs enabled us to measure tissue specificity of different TFs and to identify candidate functional variants in TF motifs from the 1000 genomes project, the GTEx project, the GWAS catalogue, and in 2,515 cancer samples from the Pan-cancer analysis of whole genome sequences (PCAWG) cohort. To enable researchers annotate genomic variants or regions of interest, we have implemented a command-line pipeline and a web-based interface that can publicly be accessed on: http://bioinf.icm.uu.se/funmotifs.


Sign in / Sign up

Export Citation Format

Share Document