surface protein
Recently Published Documents


TOTAL DOCUMENTS

4222
(FIVE YEARS 712)

H-INDEX

138
(FIVE YEARS 12)

2022 ◽  
Author(s):  
Viola Introini ◽  
Alejandro Marin-Menendez ◽  
Guilherme Nettesheim ◽  
Yen-Chun Lin ◽  
Silvia N Kariuki ◽  
...  

Malaria parasites such as Plasmodium falciparum have exerted formidable selective pressures on the human genome. Of the human genetic variants associated with malaria protection, beta thalassaemia (a haemoglobinopathy) was the earliest to be associated with malaria prevalence. However, the malaria protective properties of beta thalassaemic erythrocytes remain unclear. Here we studied the mechanics and surface protein expression of beta thalassaemia heterozygous erythrocytes, measured their susceptibility to P. falciparum invasion, and calculated the energy required for merozoites to invade them. We found invasion-relevant differences in beta thalassaemic cells versus matched controls, specifically: elevated membrane tension, reduced bending modulus, and higher levels of expression of the major invasion receptor basigin. However, these differences acted in opposition to each other with respect to their likely impact on invasion, and overall we did not observe beta thalassaemic cells to have lower P. falciparum invasion efficiency for any of the strains tested.


2022 ◽  
Vol 12 ◽  
Author(s):  
Hongqiang Lou ◽  
Xusheng Li ◽  
Xiusheng Sheng ◽  
Shuiqin Fang ◽  
Shaoye Wan ◽  
...  

Campylobacter jejuni (C. jejuni) is one of the major pathogens contributing to the enteritis in humans. Infection can lead to numerous complications, including but not limited to Guillain-Barre syndrome, reactive arthritis, and Reiter’s syndrome. Over the past two decades, joint efforts have been made toward developing a proper strategy of limiting the transmission of C. jejuni to humans. Nevertheless, except for biosecurity measures, no available vaccine has been developed so far. Judging from the research findings, Omp18, AhpC outer membrane protein, and FlgH flagellin subunits of C. jejuni could be adopted as surface protein antigens of C. jejuni for screening dominant epitope thanks to their strong antigenicity, expression of varying strains, and conservative sequence. In this study, bioinformatics technology was adopted to analyze the T-B antigenic epitopes of Omp18, AhpC, and FlgH in C. jejuni strain NCTC11168. Both ELISA and Western Blot methods were adopted to screen the dominant T-B combined epitope. GGS (GGCGGTAGC) sequence was adopted to connect the dominant T-B combined epitope peptides and to construct the prokaryotic expression system of tandem repeats of antigenic epitope peptides. The mouse infection model was adopted to assess the immunoprotective effect imposed by the trivalent T-B combined with antigen epitope peptide based on Omp18/AhpC/FlgH. In this study, a tandem epitope AhpC-2/Omp18-1/FlgH-1 was developed, which was composed of three epitopes and could effectively enhance the stability and antigenicity of the epitope while preserving its structure. The immunization of BALB/c mice with a tandem epitope could induce protective immunity accompanied by the generation of IgG2a antibody response through the in vitro synthesis of IFN-γ cytokines. Judging from the results of immune protection experiments, the colonization of C. jejuni declined to a significant extent, and it was expected that AhpC-2/Omp18-1/FlgH-1 could be adopted as a candidate antigen for genetic engineering vaccine of C. jejuni MAP.


2022 ◽  
Author(s):  
Evilina Alekseevna Ivanova

Recently, there has been a keen interest in the physicochemical features of self-organizing spatio-temporal, heteropolymer-supramolecular assemblies, in which the system of components of the fluctuation dynamics of surface protein groups is evolutionarily selected for the implementation of morphogenetic processes of ontogenesis.That is, evolution created chemical compounds, the exceptional organization of which ensured the fulfillment of the most complex and precise tasks.In this research, the bacterial cell ofE. coli was considered in the concept of supramolecular science, where, in accordance with the informational development program based on the principles of molecular recognition, phase ensembles appear, which are characterized by a certain organization, depending on the phase growth of the population culture. In this respect, proteomic super-molecular physicochemistry can be considered as physicochemical or molecular informatics.Arginine is of interest because almost all of its molecule is active and undergoes obligatory interactions both with DNA and with other histones and non-histones. The results of this study demonstrated the super-protein surface of supramolecular assemblies, the flexible system PPCС-E.coli, active zones, dynamics of continuity, positioning topologicalspatio-temporal Arg-protease-processing, local areas of the nucleoid system, and interrelations at the level of: Bp-liquid crystal-bacterioplasma; NsCo-fragile, PsCo-tightly bound to the cell remainder; and in the Co-cell remainder itself. These data may be of practical interest in various engineering aspects of biotechnology. Keywords: arginine protease processing, supramolecules, E.coli, phase protein, super-molecules.


2022 ◽  
Vol 12 ◽  
Author(s):  
Susana Ruiz-Ruiz ◽  
Carolina A. Ponce ◽  
Nicole Pesantes ◽  
Rebeca Bustamante ◽  
Gianna Gatti ◽  
...  

Here we report a new real-time PCR assay using SYBR Green which provides higher sensitivity for the specific detection of low levels of Pneumocystis jirovecii. To do so, two primer sets were designed, targeting the family of genes that code for the most abundant surface protein of Pneumocystis spp., namely the major surface glycoproteins (Msg), and the mitochondrial large subunit rRNA (mtLSUrRNA) multicopy gene, simultaneously detecting two regions. PCR methods are instrumental in detecting these low levels; however, current nested-PCR methods are time-consuming and complex. To validate our new real-time Msg-A/mtLSUrRNA PCR protocol, we compared it with nested-PCR based on the detection of Pneumocystis mitochondrial large subunit rRNA (mtLSUrRNA), one of the main targets used to detect this pathogen. All samples identified as positive by the nested-PCR method were found positive using our new real-time PCR protocol, which also detected P. jirovecii in three nasal aspirate samples that were negative for both rounds of nested-PCR. Furthermore, we read both rounds of the nested-PCR results for comparison and found that some samples with no PCR amplification, or with a feeble band in the first round, correlated with higher Ct values in our real-time Msg-A/mtLSUrRNA PCR. This finding demonstrates the ability of this new single-round protocol to detect low Pneumocystis levels. This new assay provides a valuable alternative for P. jirovecii detection, as it is both rapid and sensitive.


Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 119
Author(s):  
Sophia S. Borisevich ◽  
Edward M. Khamitov ◽  
Maxim A. Gureev ◽  
Olga I. Yarovaya ◽  
Nadezhda B. Rudometova ◽  
...  

In this work, we evaluated the antiviral activity of Arbidol (Umifenovir) against SARS-CoV-2 using a pseudoviral system with the glycoprotein S of the SARS-CoV-2 virus on its surface. In order to search for binding sites to protein S of the virus, we described alternative binding sites of Arbidol in RBD and in the ACE-2-RBD complex. As a result of our molecular dynamics simulations combined with molecular docking data, we note the following fact: wherever the molecules of Arbidol bind, the interaction of the latter affects the structural flexibility of the protein. This interaction may result both in a change in the shape of the domain–enzyme binding interface and simply in a change in the structural flexibility of the domain, which can subsequently affect its affinity to the enzyme. In addition, we examined the possibility of Arbidol binding in the stem part of the surface protein. The possibility of Arbidol binding in different parts of the protein is not excluded. This may explain the antiviral activity of Arbidol. Our results could be useful for researchers searching for effective SARS-CoV-2 virus inhibitors targeting the viral entry stage.


2022 ◽  
Author(s):  
Yumin Zhang ◽  
Song Liang ◽  
Zihao Pan ◽  
Yong Yu ◽  
Huochun Yao ◽  
...  

Abstract Streptococcus suis is an important emerging zoonosis that causes economic losses in the pig industry and severe threats to public health. Transcriptional regulators play essential roles in bacterial adaptation to host environments. In this study, we identified a novel XRE family transcriptional regulator in S. suis CZ130302, XtrSs, involved in the bacterial fitness to hydrogen peroxide stress. Based on electrophoretic mobility shift and β-galactosidase activity assays, we found that XtrSs autoregulated its own transcription and repressed the expression of its downstream gene psePs, a surface protein with unknown function in S. suis, by binding to a palindromic sequence from the promoter region. Furthermore, we proved that the deletion of the psePs gene attenuated bacterial antioxidant response. Phylogenetic analysis revealed that XtrSs and PsePs naturally co-existed as a combination in most S. suis genomes. Collectively, we demonstrated the binding characteristics of XtrSs in S. suis and provided a new insight that XtrSs played a critical role in modulating psePs to the hydrogen peroxide resistance of S. suis.


2022 ◽  
Vol 16 (1) ◽  
pp. e0010049
Author(s):  
Adan Oviedo ◽  
Camelia Herman ◽  
Alaine Knipes ◽  
Caitlin M. Worrell ◽  
LeAnne M. Fox ◽  
...  

Background Estimation of malaria prevalence in very low transmission settings is difficult by even the most advanced diagnostic tests. Antibodies against malaria antigens provide an indicator of active or past exposure to these parasites. The prominent malaria species within Haiti is Plasmodium falciparum, but P. vivax and P. malariae infections are also known to be endemic. Methodology/Principal findings From 2014–2016, 28,681 Haitian children were enrolled in school-based serosurveys and were asked to provide a blood sample for detection of antibodies against multiple infectious diseases. IgG against the P. falciparum, P. vivax, and P. malariae merozoite surface protein 19kD subunit (MSP119) antigens was detected by a multiplex bead assay (MBA). A subset of samples was also tested for Plasmodium DNA by PCR assays, and for Plasmodium antigens by a multiplex antigen detection assay. Geospatial clustering of high seroprevalence areas for P. vivax and P. malariae antigens was assessed by both Ripley’s K-function and Kulldorff’s spatial scan statistic. Of 21,719 children enrolled in 680 schools in Haiti who provided samples to assay for IgG against PmMSP119, 278 (1.27%) were seropositive. Of 24,559 children enrolled in 788 schools providing samples for PvMSP119 serology, 113 (0.46%) were seropositive. Two significant clusters of seropositivity were identified throughout the country for P. malariae exposure, and two identified for P. vivax. No samples were found to be positive for Plasmodium DNA or antigens. Conclusions/Significance From school-based surveys conducted from 2014 to 2016, very few Haitian children had evidence of exposure to P. vivax or P. malariae, with no children testing positive for active infection. Spatial scan statistics identified non-overlapping areas of the country with higher seroprevalence for these two malarias. Serological data provides useful information of exposure to very low endemic malaria species in a population that is unlikely to present to clinics with symptomatic infections.


2022 ◽  
Author(s):  
Guy Oldrieve ◽  
Beatrice Malacart ◽  
Javier López-Vidal ◽  
Keith Matthews

The ability of trypanosome parasites to survive and sustain infections is dependent on diverse and intricate immune evasion mechanisms. Pathogenic trypanosomes often have broad host niches that preclude identification of host specific adaptations. In contrast, some non-pathogenic species of the genus Trypanosoma have highly specific hosts and vectors. Trypanosoma theileri, a non-pathogenic parasite of bovines, has a predicted surface protein architecture that likely aids survival in its mammalian host, distinct from the dominant variant surface glycoprotein coat of pathogenic African trypanosomes. In both species, their surface proteins are encoded by genes which account for ~10% of their genome. A non-pathogenic parasite of sheep, Trypanosoma melophagium, is transmitted by the sheep ked and is closely related to T. theileri. To explore host and vector specificity between these closely related species, we sequenced the T. melophagium genome and transcriptome and an annotated draft genome was assembled. T. melophagium was compared to 43 kinetoplastid genomes, including T. theileri. T. melophagium and T. theileri have an AT biased genome, the greatest bias of publicly available trypanosomatids. This trend may result from selection acting to decrease the genome nucleotide cost. The T. melophagium genome is 6.3Mb smaller than T. theileri and large families of proteins, characteristic of the predicted surface of T. theileri, were found to be absent or greatly reduced in T. melophagium. Instead, T. melophagium has modestly expanded protein families associated with the avoidance of complement-mediated lysis. The genome of T. melophagium contains core genes required for development, glycolysis, RNA interference, and meiotic exchange, each being shared with T. theileri. Comparisons between T. melophagium and T. theileri provide insight into the specific adaptations of these related trypanosomatids to their distinct mammalian hosts and arthropod vectors.


2022 ◽  
Author(s):  
Sthiti Porna Dutta ◽  
Anis Alam

Abstract DBN possess the ability to induce bladder tumor as well as in the liver, and oesophagus when it is administered in the body.Exposure to DBN can happen by different modes such as by ingestion,inhalation as well through dermal contact.In the present investigation an attempt has been done to identify ,isolate as well to purify he TAA from the liver mitochondria of the mice which was exposed to DBN. It was found that mitochondrial membrane surface protein of DBN-exposed animals exhibited differential expression when compared with the control animals. A low molecular weight (~14 kDa) protein was found to be over expressed on liver mitochondrial membrane upon DBN exposure in mice as compared with the normal control and identified as TAA, showing the sign that some of the proteins could be used as TAA for further study.These identification and molecular characterization of TAAs will provide the basis for the development of cancer vaccines targeting TAAs.


Sign in / Sign up

Export Citation Format

Share Document