scholarly journals Massive social protests amid the pandemic in selected Colombian cities: Did they increase COVID-19 cases?

Author(s):  
Jose Moreno-Montoya ◽  
Laura A Rodriguez Villamizar ◽  
Alvaro Javier Idrovo

Background. Since April 28, 2021, in Colombia there are social protests with numerous demonstrations in various cities. This occurs whereas the country faces the third wave of the COVID-19 pandemic. The aim of this study was to assess the effect of social protests on the number and trend of the confirmed COVID-19 cases in some selected Colombian cities where social protests had more intensity. Methods. We performed and interrupted time-series analysis (ITSA) and Autoregressive Integrated Moving Average (ARIMA) models, based on the confirmed COVID-19 cases in Colombia, between March 1 and May 15, 2021, for the cities of Bogota, Cali, Barranquilla, Medellin, and Bucaramanga. The ITSA models estimated the impact of social demonstrations on the number and trend of cases for each city by using Newey-West standard errors and ARIMA models assessed the overall pattern of the series and effect of the intervention. We considered May 2, 2021, as the intervention date for the analysis, five days after social demonstrations started in the country. Findings. During the study period the number of cases by city was 1,014,815 for Bogota, 192,320 for Cali, 175,269 for Barranquilla, 311,904 for Medellin, and 62,512 for Bucaramanga. Heterogeneous results were found among cities. Only for the cities of Cali and Barranquilla statistically significant changes in trend of the number of cases were obtained after the intervention: positive in the first city, negative in the second one. None ARIMA models show evidence of abrupt changes in the trend of the series for any city and intervention effect was only positive for Bucaramanga. Interpretation. The findings confer solid evidence that social protests had an heterogenous effect on the number and trend of COVID-19 cases. Divergent effects might be related to the epidemiologic time of the pandemic and the characteristics of the social protests. Assessing the effect of social protests within a pandemic is complex and there are several methodological limitations. Further analyses are required with longer time-series data.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Andrea L. Schaffer ◽  
Timothy A. Dobbins ◽  
Sallie-Anne Pearson

Abstract Background Interrupted time series analysis is increasingly used to evaluate the impact of large-scale health interventions. While segmented regression is a common approach, it is not always adequate, especially in the presence of seasonality and autocorrelation. An Autoregressive Integrated Moving Average (ARIMA) model is an alternative method that can accommodate these issues. Methods We describe the underlying theory behind ARIMA models and how they can be used to evaluate population-level interventions, such as the introduction of health policies. We discuss how to select the shape of the impact, the model selection process, transfer functions, checking model fit, and interpretation of findings. We also provide R and SAS code to replicate our results. Results We illustrate ARIMA modelling using the example of a policy intervention to reduce inappropriate prescribing. In January 2014, the Australian government eliminated prescription refills for the 25 mg tablet strength of quetiapine, an antipsychotic, to deter its prescribing for non-approved indications. We examine the impact of this policy intervention on dispensing of quetiapine using dispensing claims data. Conclusions ARIMA modelling is a useful tool to evaluate the impact of large-scale interventions when other approaches are not suitable, as it can account for underlying trends, autocorrelation and seasonality and allows for flexible modelling of different types of impacts.


2021 ◽  
Vol 11 (8) ◽  
pp. 3561
Author(s):  
Diego Duarte ◽  
Chris Walshaw ◽  
Nadarajah Ramesh

Across the world, healthcare systems are under stress and this has been hugely exacerbated by the COVID pandemic. Key Performance Indicators (KPIs), usually in the form of time-series data, are used to help manage that stress. Making reliable predictions of these indicators, particularly for emergency departments (ED), can facilitate acute unit planning, enhance quality of care and optimise resources. This motivates models that can forecast relevant KPIs and this paper addresses that need by comparing the Autoregressive Integrated Moving Average (ARIMA) method, a purely statistical model, to Prophet, a decomposable forecasting model based on trend, seasonality and holidays variables, and to the General Regression Neural Network (GRNN), a machine learning model. The dataset analysed is formed of four hourly valued indicators from a UK hospital: Patients in Department; Number of Attendances; Unallocated Patients with a DTA (Decision to Admit); Medically Fit for Discharge. Typically, the data exhibit regular patterns and seasonal trends and can be impacted by external factors such as the weather or major incidents. The COVID pandemic is an extreme instance of the latter and the behaviour of sample data changed dramatically. The capacity to quickly adapt to these changes is crucial and is a factor that shows better results for GRNN in both accuracy and reliability.


2019 ◽  
Vol 9 (2) ◽  
pp. 22-31 ◽  
Author(s):  
Jay Schyler Raadt

Neglecting to measure autocorrelation in longitudinal research methods such as Repeated Measures (RM) ANOVA produces invalid results. Using simulated time series data varying on autocorrelation, this paper compares the performance of repeated measures analysis of variance (RM ANOVA) to interrupted time series autoregressive integrated moving average (ITS ARIMA) models, which explicitly model autocorrelation. Results show that the number of RM ANOVA signaling an intervention effect increase as autocorrelation increases whereas this relationship is opposite using ITS ARIMA. This calls the use of RM ANOVA for longitudinal educational research into question as well as past scientific results that used this method, exhorting educational researchers to investigate the use of ITS ARIMA.


2020 ◽  
Author(s):  
Hasan Symum ◽  
Md. F. Islam ◽  
Habsa K. Hiya ◽  
Kh M. Ali Sagor

AbstractBackgroundCOVID-19 pandemic created an unprecedented disruption of daily life including the pattern of skin related treatments in healthcare settings by issuing stay-at-home orders and newly coronaphobia around the world.ObjectiveThis study aimed to evaluate whether there are any significant changes in population interest for skincare during the COVID-19 pandemic.MethodsFor the skincare, weekly RSV data were extracted for worldwide and 23 counties between August 1, 2016, and August 31, 2020. Interrupted time-series analysis was conducted as the quasi-experimental approach to evaluate the longitudinal effects of COVID-19 skincare related search queries. For each country, autoregressive integrated moving average (ARIMA) model relative search volume (RSV) time series and then testing multiple periods simultaneously to examine the magnitude of the interruption. Multivariate linear regression was used to estimate the correlation between countries’ relative changes in RSV with COVID-19 confirmed cases/ per 10000 patients and lockdown measures.ResultsOut of 23 included countries in our study, 17 showed significantly increased (p<0.01) RSVs during the lockdown period compared with the ARIMA forecasted data. The highest percentage of increments occurs in May and June 2020 in most countries. There was also a significant correlation between lockdown measures and the number of COVID-19 cases with relatives changes in population interests for skincare.ConclusionUnderstanding the trend and changes in skincare public interest during COVID-19 may assist health authorities to promote accessible educational information and preventive initiatives regarding skin problems.


Author(s):  
Cara L. Sedney ◽  
Maryam Khodaverdi ◽  
Robin Pollini ◽  
Patricia Dekeseredy ◽  
Nathan Wood ◽  
...  

Abstract Background The Opioid Reduction Act (SB 273) took effect in West Virginia in June 2018. This legislation limited ongoing chronic opioid prescriptions to 30 days’ supply, and first-time opioid prescriptions to 7 days’ supply for surgeons and 3 days’ for emergency rooms and dentists. The purpose of this study was to determine the effect of this legislation on reducing opioid prescriptions in West Virginia, with the goal of informing future similar policy efforts. Methods Data were requested from the state Prescription Drug Monitoring Program (PDMP) including overall number of opioid prescriptions, number of first-time opioid prescriptions, average daily morphine milligram equivalents (MME) and prescription duration (expressed as “days’ supply”) given to adults during the 64 week time periods before and after legislation enactment. Statistical analysis was done utilizing an autoregressive integrated moving average (ARIMA) interrupted time series analysis to assess impact of both legislation announcement and enactment while controlling secular trends and considering autocorrelation trends. Benzodiazepine prescriptions were utilized as a control. Results Our analysis demonstrates a significant decrease in overall state opioid prescribing as well as a small change in average daily MME associated with the date of the legislation’s enactment when considering serial correlation in the time series and accounting for pre-intervention trends. There was no such association found with benzodiazepine prescriptions. Conclusion Results of the current study suggest that SB 273 was associated with an average 22.1% decrease of overall opioid prescriptions and a small change in average daily MME relative to the date of legislative implementation in West Virginia. There was, however, no association of the legislation on first-time opioid prescriptions or days’ supply of opioid medication, and all variables were trending downward prior to implementation of SB 273. The control demonstrated no relationship to the law.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Simon L. Turner ◽  
Amalia Karahalios ◽  
Andrew B. Forbes ◽  
Monica Taljaard ◽  
Jeremy M. Grimshaw ◽  
...  

Abstract Background The Interrupted Time Series (ITS) is a quasi-experimental design commonly used in public health to evaluate the impact of interventions or exposures. Multiple statistical methods are available to analyse data from ITS studies, but no empirical investigation has examined how the different methods compare when applied to real-world datasets. Methods A random sample of 200 ITS studies identified in a previous methods review were included. Time series data from each of these studies was sought. Each dataset was re-analysed using six statistical methods. Point and confidence interval estimates for level and slope changes, standard errors, p-values and estimates of autocorrelation were compared between methods. Results From the 200 ITS studies, including 230 time series, 190 datasets were obtained. We found that the choice of statistical method can importantly affect the level and slope change point estimates, their standard errors, width of confidence intervals and p-values. Statistical significance (categorised at the 5% level) often differed across the pairwise comparisons of methods, ranging from 4 to 25% disagreement. Estimates of autocorrelation differed depending on the method used and the length of the series. Conclusions The choice of statistical method in ITS studies can lead to substantially different conclusions about the impact of the interruption. Pre-specification of the statistical method is encouraged, and naive conclusions based on statistical significance should be avoided.


2020 ◽  
Author(s):  
Cara L. Sedney ◽  
Maryam Khodaverdi ◽  
Robin Pollini ◽  
Patricia Dekeseredy ◽  
Nathan Wood ◽  
...  

Abstract Background: The Opioid Reduction Act (SB 273) took effect in West Virginia in June 2018. This legislation limited ongoing chronic opioid prescriptions to 30 days’ supply, and first-time opioid prescriptions to 7 days’ supply for surgeons and 3 days’ for emergency rooms and dentists. The purpose of this study was to determine the effect of this legislation on reducing opioid prescriptions in West Virginia, with the goal of informing future similar policy efforts. Methods: Data were requested from the state Prescription Drug Monitoring Program (PDMP) including overall number of opioid prescriptions, number of first-time opioid prescriptions, average daily morphine milligram equivalents (MME) and prescription duration (expressed as “day’s supply”) given to adults during the 64 week time periods before and after legislation enactment. Statistical analysis was done utilizing an autoregressive integrated moving average (ARIMA) interrupted time series analysis to assess impact of both legislation announcement and enactment while controlling secular trends and considering autocorrelation trends. Benzodiazepine prescriptions were utilized as a control.Results: Our analysis demonstrates a statistically significant decrease in overall state opioid prescribing as well as average daily MME associated with the date of the legislation’s enactment when considering serial correlation in the time series and accounting for pre-intervention trends. There was no such association found with benzodiazepine prescriptions.Conclusion: Results of the current study suggest that SB 273 was associated with an average 22.1% decrease of overall opioid prescriptions and a small overall decrease of average daily MME relative to the date of legislative implementation in West Virginia. There was, however, no association of the legislation on first-time opioid prescriptions or days’ supply of opioid medication, and all variables were trending downward prior to implementation of SB 273. The control demonstrated no relationship to the law.


2018 ◽  
Vol 3 (1) ◽  
pp. 19-39 ◽  
Author(s):  
Yaşar Tonta

Abstract Purpose One of the main indicators of scientific production is the number of papers published in scholarly journals. Turkey ranks 18th place in the world based on the number of scholarly publications. The objective of this paper is to find out if the monetary support program initiated in 1993 by the Turkish Scientific and Technological Research Council (TÜBİTAK) to incentivize researchers and increase the number, impact, and quality of international publications has been effective in doing so. Design/methodology/approach We analyzed some 390,000 publications with Turkish affiliations listed in the Web of Science (WoS) database between 1976 and 2015 along with about 157,000 supported ones between 1997 and 2015. We used the interrupted time series (ITS) analysis technique (also known as “quasi-experimental time series analysis” or “intervention analysis”) to test if TÜBİTAK’s support program helped increase the number of publications. We defined ARIMA (1,1,0) model for ITS data and observed the impact of TÜBİTAK’s support program in 1994, 1997, and 2003 (after one, four and 10 years of its start, respectively). The majority of publications (93%) were full papers (articles), which were used as the experimental group while other types of contributions functioned as the control group. We also carried out a multiple regression analysis. Findings TÜBİTAK’s support program has had negligible effect on the increase of the number of papers with Turkish affiliations. Yet, the number of other types of contributions continued to increase even though they were not well supported, suggesting that TÜBİTAK’s support program is probably not the main factor causing the increase in the number of papers with Turkish affiliations. Research limitations Interrupted time series analysis shows if the “intervention” has had any significant effect on the dependent variable but it does not explain what caused the increase in the number of papers if it was not the intervention. Moreover, except the “intervention”, other “event(s)” that might affect the time series data (e.g., increase in the number of research personnel over the years) should not occur during the period of analysis, a prerequisite that is beyond the control of the researcher. Practical implications TÜBİTAK’s “cash-for-publication” program did not seem to have direct impact on the increase of the number of papers published by Turkish authors, suggesting that small amounts of payments are not much of an incentive for authors to publish more. It might perhaps be a better strategy to concentrate limited resources on a few high impact projects rather than to disperse them to thousands of authors as “micropayments.” Originality/value Based on 25 years’ worth of payments data, this is perhaps one of the first large-scale studies showing that “cash-for-publication” policies or “piece rates” paid to researchers tend to have little or no effect on the increase of researchers’ productivity. The main finding of this paper has some implications for countries wherein publication subsidies are used as an incentive to increase the number and quality of papers published in international journals. They should be prepared to consider reviewing their existing support programs (based usually on bibliometric measures such as journal impact factors) and revising their reward policies.


2019 ◽  
Vol 10 (11) ◽  
pp. 1045-1056
Author(s):  
Shaik Nafeez Umar Shaik ◽  
◽  
Labeeb Mohammed Zeeshan ◽  

The Stock market is eyewitness’s responsive activities and is gradually more gaining importance. The purpose of the study is to measure the volatility of selected emerging indices Muscat Securities Market (MSM). Time series analysis techniques were used including Auto Regressive Integrated Moving Average (ARIMA) models. The time series data considered of this study taken MSM 30. The study period has taken from January 2013 to December 2018 except Sharia-compliant index would be June 2013 to December 2018. Tools used for the study is Unit Toot Test (Augmented Dickey–Fuller and Phillips-Perron), ARIMA models and for performance model using Theil’s U-Statistic. The study made a few observations which may help the investors and model builders to understand better about the stock market.


Sign in / Sign up

Export Citation Format

Share Document