scholarly journals A Comparison of Time-Series Predictions for Healthcare Emergency Department Indicators and the Impact of COVID-19

2021 ◽  
Vol 11 (8) ◽  
pp. 3561
Author(s):  
Diego Duarte ◽  
Chris Walshaw ◽  
Nadarajah Ramesh

Across the world, healthcare systems are under stress and this has been hugely exacerbated by the COVID pandemic. Key Performance Indicators (KPIs), usually in the form of time-series data, are used to help manage that stress. Making reliable predictions of these indicators, particularly for emergency departments (ED), can facilitate acute unit planning, enhance quality of care and optimise resources. This motivates models that can forecast relevant KPIs and this paper addresses that need by comparing the Autoregressive Integrated Moving Average (ARIMA) method, a purely statistical model, to Prophet, a decomposable forecasting model based on trend, seasonality and holidays variables, and to the General Regression Neural Network (GRNN), a machine learning model. The dataset analysed is formed of four hourly valued indicators from a UK hospital: Patients in Department; Number of Attendances; Unallocated Patients with a DTA (Decision to Admit); Medically Fit for Discharge. Typically, the data exhibit regular patterns and seasonal trends and can be impacted by external factors such as the weather or major incidents. The COVID pandemic is an extreme instance of the latter and the behaviour of sample data changed dramatically. The capacity to quickly adapt to these changes is crucial and is a factor that shows better results for GRNN in both accuracy and reliability.

2021 ◽  
Author(s):  
Jose Moreno-Montoya ◽  
Laura A Rodriguez Villamizar ◽  
Alvaro Javier Idrovo

Background. Since April 28, 2021, in Colombia there are social protests with numerous demonstrations in various cities. This occurs whereas the country faces the third wave of the COVID-19 pandemic. The aim of this study was to assess the effect of social protests on the number and trend of the confirmed COVID-19 cases in some selected Colombian cities where social protests had more intensity. Methods. We performed and interrupted time-series analysis (ITSA) and Autoregressive Integrated Moving Average (ARIMA) models, based on the confirmed COVID-19 cases in Colombia, between March 1 and May 15, 2021, for the cities of Bogota, Cali, Barranquilla, Medellin, and Bucaramanga. The ITSA models estimated the impact of social demonstrations on the number and trend of cases for each city by using Newey-West standard errors and ARIMA models assessed the overall pattern of the series and effect of the intervention. We considered May 2, 2021, as the intervention date for the analysis, five days after social demonstrations started in the country. Findings. During the study period the number of cases by city was 1,014,815 for Bogota, 192,320 for Cali, 175,269 for Barranquilla, 311,904 for Medellin, and 62,512 for Bucaramanga. Heterogeneous results were found among cities. Only for the cities of Cali and Barranquilla statistically significant changes in trend of the number of cases were obtained after the intervention: positive in the first city, negative in the second one. None ARIMA models show evidence of abrupt changes in the trend of the series for any city and intervention effect was only positive for Bucaramanga. Interpretation. The findings confer solid evidence that social protests had an heterogenous effect on the number and trend of COVID-19 cases. Divergent effects might be related to the epidemiologic time of the pandemic and the characteristics of the social protests. Assessing the effect of social protests within a pandemic is complex and there are several methodological limitations. Further analyses are required with longer time-series data.


2017 ◽  
Vol 54 (6) ◽  
pp. 930-957 ◽  
Author(s):  
Henda Y. Hsu ◽  
David McDowall

Objectives: This study examines whether the use of target-hardening measures engenders greater amounts of casualty terrorist attacks against protected targets. Specifically, this study evaluates the impact of augmenting aviation security and protection of U.S. embassies and diplomats on the frequency and proportion of casualty attacks against aviation targets and U.S. diplomatic targets, respectively. Method: Using time-series data from the Global Terrorism Database (1970 to 2001), this study conducts time-series intervention analysis. To provide a more comprehensive test, a variety of supplementary analyses—consisting of data transformations, various onsets of the interventions, autoregressive integrated moving average, Poisson, and vector autoregression models of time-series data—are performed. Results: We found no increase in the frequency or proportion of casualty attacks against protected targets following target-hardening interventions. The results show that the typical ensuing terrorist attack against hardened targets is not violence based (i.e., maximizing casualties). Conclusions: Findings that attacks against hardened targets did not become deadlier provide support for the criminological message that unintended harmful effects from situational terrorism prevention strategies are the exception rather than the rule.


2008 ◽  
Vol 18 (12) ◽  
pp. 3679-3687 ◽  
Author(s):  
AYDIN A. CECEN ◽  
CAHIT ERKAL

We present a critical remark on the pitfalls of calculating the correlation dimension and the largest Lyapunov exponent from time series data when trend and periodicity exist. We consider a special case where a time series Zi can be expressed as the sum of two subsystems so that Zi = Xi + Yi and at least one of the subsystems is deterministic. We show that if the trend and periodicity are not properly removed, correlation dimension and Lyapunov exponent estimations yield misleading results, which can severely compromise the results of diagnostic tests and model identification. We also establish an analytic relationship between the largest Lyapunov exponents of the subsystems and that of the whole system. In addition, the impact of a periodic parameter perturbation on the Lyapunov exponent for the logistic map and the Lorenz system is discussed.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 416
Author(s):  
Bwalya Malama ◽  
Devin Pritchard-Peterson ◽  
John J. Jasbinsek ◽  
Christopher Surfleet

We report the results of field and laboratory investigations of stream-aquifer interactions in a watershed along the California coast to assess the impact of groundwater pumping for irrigation on stream flows. The methods used include subsurface sediment sampling using direct-push drilling, laboratory permeability and particle size analyses of sediment, piezometer installation and instrumentation, stream discharge and stage monitoring, pumping tests for aquifer characterization, resistivity surveys, and long-term passive monitoring of stream stage and groundwater levels. Spectral analysis of long-term water level data was used to assess correlation between stream and groundwater level time series data. The investigations revealed the presence of a thin low permeability silt-clay aquitard unit between the main aquifer and the stream. This suggested a three layer conceptual model of the subsurface comprising unconfined and confined aquifers separated by an aquitard layer. This was broadly confirmed by resistivity surveys and pumping tests, the latter of which indicated the occurrence of leakage across the aquitard. The aquitard was determined to be 2–3 orders of magnitude less permeable than the aquifer, which is indicative of weak stream-aquifer connectivity and was confirmed by spectral analysis of stream-aquifer water level time series. The results illustrate the importance of site-specific investigations and suggest that even in systems where the stream is not in direct hydraulic contact with the producing aquifer, long-term stream depletion can occur due to leakage across low permeability units. This has implications for management of stream flows, groundwater abstraction, and water resources management during prolonged periods of drought.


2016 ◽  
Vol 111 (514) ◽  
pp. 670-683 ◽  
Author(s):  
Michael W. Robbins ◽  
Colin M. Gallagher ◽  
Robert B. Lund

2007 ◽  
pp. 88
Author(s):  
Wataru Suzuki ◽  
Yanfei Zhou

This article represents the first step in filling a large gap in knowledge concerning why Public Assistance (PA) use recently rose so fast in Japan. Specifically, we try to address this problem not only by performing a Blanchard and Quah decomposition on long-term monthly time series data (1960:04-2006:10), but also by estimating prefecturelevel longitudinal data. Two interesting findings emerge from the time series analysis. The first is that permanent shock imposes a continuously positive impact on the PA rate and is the main driving factor behind the recent increase in welfare use. The second finding is that the impact of temporary shock will last for a long time. The rate of the use of welfare is quite rigid because even if the PA rate rises due to temporary shocks, it takes about 8 or 9 years for it to regain its normal level. On the other hand, estimations of prefecture-level longitudinal data indicate that the Financial Capability Index (FCI) of the local government2 and minimum wage both impose negative effects on the PA rate. We also find that the rapid aging of Japan's population presents a permanent shock in practice, which makes it the most prominent contribution to surging welfare use.


2020 ◽  
Vol 6 (1) ◽  
pp. 273-282
Author(s):  
Majid Hussain Phul ◽  
Muhammad Saleem Rahpoto ◽  
Ghulam Muhammad Mangnejo

This research paper empirically investigates the outcome of Political stability on economic growth (EG) of Pakistan for the period of 1988 to 2018. Political stability (PS), gross fixed capital formation (GFCF), total labor force (TLF) and Inflation (INF) are important explanatory variables. Whereas for model selection GDPr is used as the dependent variable. To check the stationary of time series data Augmented Dickey Fuller (ADF) unit root (UR) test has been used,  and whereas to find out the long run relationship among variables, OLS method has been used. The analysis the impact of PS on EG (EG) in the short run, VAR model has been used. The outcomes show that all the variables (PS, GFCF, TLF and INF) have a significantly positive effect on the EG of Pakistan in the long run period. But the effect of PS on GDP is smaller. Further, in this research we are trying to see the short run relationship between GDP and other explanatory variables. The outcomes show that PS does not have such effect on GDP in the short run analysis. While GFCF, TLF and INF have significantly positive effect on GDP of Pakistan in the short run period.


MAUSAM ◽  
2021 ◽  
Vol 68 (2) ◽  
pp. 349-356
Author(s):  
J. HAZARIKA ◽  
B. PATHAK ◽  
A. N. PATOWARY

Perceptive the rainfall pattern is tough for the solution of several regional environmental issues of water resources management, with implications for agriculture, climate change, and natural calamity such as floods and droughts. Statistical computing, modeling and forecasting data are key instruments for studying these patterns. The study of time series analysis and forecasting has become a major tool in different applications in hydrology and environmental fields. Among the most effective approaches for analyzing time series data is the ARIMA (Autoregressive Integrated Moving Average) model introduced by Box and Jenkins. In this study, an attempt has been made to use Box-Jenkins methodology to build ARIMA model for monthly rainfall data taken from Dibrugarh for the period of 1980- 2014 with a total of 420 points.  We investigated and found that ARIMA (0, 0, 0) (0, 1, 1)12 model is suitable for the given data set. As such this model can be used to forecast the pattern of monthly rainfall for the upcoming years, which can help the decision makers to establish priorities in terms of agricultural, flood, water demand management etc.  


2018 ◽  
Vol 9 (1) ◽  
pp. 171-180
Author(s):  
I Gede Sanica ◽  
I Ketut Nurcita ◽  
I Made Mastra ◽  
Desak Made Sukarnasih

AbstractThis study aims to analyze effectivity and forecast of interest rate BI 7-Day Repo Rate as policy reference in the implementation of monetary policy. The method was used in this study contains Vector Autoregression (VAR) to estimate effectivity of BI 7-Day Repo Rate and Autoregressive Integrated Moving Average (ARIMA) to forecast of BI 7-Day Repo Rate. Period of observation in this study used time series data during 2016.4 until 2017.6. The result of this research shows that the transformation of the BI Rate to BI 7-Day Repo Rate is the right step in the monetary policy operation in the effort to reach deepening of the financial market and strengthen the interbank money market structure so that it will decrease loan interest rate and encourage credit growth. The effectiveness of the use of BI 7 Day-Repo Rate on price stability is indicated by the positive relationship between the benchmark interest rate and inflation compared to the BI Rate. The impact of BI 7-Day Repo Rate on economic growth that tends to be positive. Forecasting the use of BI 7-Day Repo Rate shows good results with declining value levels, so this will encourage deepening the financial markets.


2020 ◽  
Vol 2 (1) ◽  
pp. 128-145
Author(s):  
Yuafanda Kholfi Hartono ◽  
Sumarto Eka Putra

Indonesia Japan Economic Partnership Agreement (IJ-EPA) is a bilateral free-trade agreement between Indonesia and Japan that has been started from July 1st, 2008. After more than a decade of its implementation, there is a question that we need to be addressed: Does liberalization of IJ-EPA make Indonesia’s export to Japan increase? This question is important since the government gives a trade-off by giving lower tariff for certain commodities agreed in agreement to increase export. Using Interrupted time series (ITS) analysis based on time-series data from Statistics Indonesia (BPS), this article found that the impact of IJ-EPA decreased for Indonesia export to Japan. Furthermore, this paper proposed some potential commodities that can increase the effectiveness of this FTA. The importance of this topic is that Indonesia will maximize the benefit in implementing of agreement that they made from the third biggest destination export of their total export value, so it will be in line with the government's goal to expand export market to solve current account deficit. In addition, the method that used in this paper can be implemented to other countries so that they can maximize the effect of Free Trade Agreement, especially for their export.


Sign in / Sign up

Export Citation Format

Share Document