scholarly journals Fusobacterium nucleatum metabolically integrates commensals and pathogens in oral biofilms

2021 ◽  
Author(s):  
Akito Sakanaka ◽  
Masae Kuboniwa ◽  
Shuichi Shimma ◽  
Samar A. Alghamdi ◽  
Shota Mayumi ◽  
...  

Fusobacterium nucleatum is a common constituent of the oral microbiota in both periodontal health and disease. Previously, we discovered ornithine cross-feeding between F. nucleatum and Streptococcus gordonii, where S. gordonii secretes ornithine via an arginine-ornithine antiporter (ArcD), which in turn supports the growth and biofilm development of F. nucleatum; however, broader metabolic aspects of F. nucleatum within polymicrobial communities and their impact on periodontal pathogenesis have not been addressed. Here, we show that when co-cultured with S. gordonii, F. nucleatum increased amino acid availability to enhance the production of butyrate and putrescine, a polyamine produced by ornithine decarboxylation. Co-culture with Veillonella parvula, another common inhabitant of the oral microbiota, also increased lysine availability, promoting cadaverine production by F. nucleatum. We confirmed that ArcD-dependent ornithine excretion by S. gordonii results in synergistic putrescine production, and mass spectrometry imaging revealed this metabolic capability creates a putrescine-rich microenvironment inside F. nucleatum biofilms. We further demonstrated that polyamines caused significant changes in the biofilm phenotype of a periodontal pathogen, Porphyromonas gingivalis, with putrescine being a potent stimulator of biofilm development and dispersal, and confirmed that F. nucleatum-mediated conversion of ornithine to putrescine enhances biofilm formation by P. gingivalis. Lastly, analysis of plaque samples revealed cooccurrence of P. gingivalis with genetic modules for putrescine production by S. gordonii and F. nucleatum. Overall, our results highlight the ability of F. nucleatum to induce synergistic polyamine production within multi-species consortia, and provide insight into how the trophic web in oral biofilm ecosystems can eventually shape disease-associated communities.

mSphere ◽  
2016 ◽  
Vol 1 (3) ◽  
Author(s):  
Kaitlin J. Flynn ◽  
Nielson T. Baxter ◽  
Patrick D. Schloss

ABSTRACT The oral periodontopathic bacterium Fusobacterium nucleatum has been repeatedly associated with colorectal tumors. Molecular analysis has identified specific virulence factors that promote tumorigenesis in the colon. However, other oral community members, such as members of the Porphyromonas spp., are also found with F. nucleatum on colonic tumors, and thus, narrow studies of individual pathogens do not take community-wide virulence properties into account. A broader view of oral bacterial physiology and pathogenesis identifies two factors that could promote colonization and persistence of oral bacterial communities in the colon. The polymicrobial nature of oral biofilms and the asaccharolytic metabolism of many of these species make them well suited to life in the microenvironment of colonic lesions. Consideration of these two factors offers a novel perspective on the role of oral microbiota in the initiation, development, and treatment of colorectal cancer.


2018 ◽  
Vol 12 (5) ◽  
pp. 1210-1224 ◽  
Author(s):  
Casey Chen ◽  
Chris Hemme ◽  
Joan Beleno ◽  
Zhou Jason Shi ◽  
Daliang Ning ◽  
...  

Author(s):  
Qinfeng Ding ◽  
Xuecheng Sun ◽  
Shuai Cao ◽  
Cancan Zhao ◽  
Yitong Wang ◽  
...  

Abstract Probiotics is widespreadly used nowadays. However, the safety issue with the use of live probiotics is still a matter of contention. In recent years, an expanding body of evidence supports the beneficial role of heat killed probiotics in the maintenance of systemic health, whereas the role of these heat killed bacteria on periodontal health remains unclear. This study aimed to evaluate the effects of heat killed probiotics on periodontal pathogen virulence and associated mechanisms. We demonstrated that heat killed Lactobacillus acidophilus was able to coaggregate with Fusobacterium nucleatum, the bridging bacteria of oral biofilm, and inhibit the adhesion and invasion of F. nucleatum, leading to a subsequent elimination of pro-inflammatory cytokine production in oral epithelial cells. This coaggregation further caused a suppression of the virulence gene fap2 expression in F. nucleatum. Therefore, heat killed L. acidophilus might downregulate the pro-inflammatory cytokine expression in epithelial cells via coaggregation with F. nucleatum and suppression of F. nucleatum fap2 expression, which was the first demonstration that heat killed probiotics modulate periodontal disease pathogenesis via coaggregation. Collectively, this finding provides new evidence that heat killed probiotics might exert beneficial effects to periodontal health by coaggregating with periodontal pathogens and modulating their virulence.


2021 ◽  
Vol 9 (6) ◽  
pp. 1311
Author(s):  
Xiuqin Chen ◽  
Eric Banan-Mwine Daliri ◽  
Akanksha Tyagi ◽  
Deog-Hwan Oh

The initiation and development of cariogenic (that is, caries-related) biofilms are the result of the disruption of homeostasis in the oral microenvironment. There is a daily accumulation of dental biofilm on the surface of teeth and its matrix of extracellular polymers supports the host in its defense against invading microbes, thus helping to achieve oral microbial homeostasis. However, the homeostasis can be broken down under certain circumstances such as during long-term exposure to a low pH environment which results in the dominance of acidogenic and acid-tolerating species in the dental biofilm and, thus, triggers the shift of harmless biofilm to an acidic one. This work aims to explore microbial diversity and the quorum sensing of dental biofilm and their important contributions to oral health and disease. The complex and multispecies ecosystems of the cariogenic biofilm pose significant challenges for the modulation of the oral microenvironment. Promising treatment strategies are those that target cariogenic niches with high specificity without disrupting the balance of the surrounding oral microbiota. Here, we summarized the recent advances in modulating cariogenic biofilm and/or controlling its pathogenic traits.


2020 ◽  
Author(s):  
Shih-Chi Su ◽  
Lun-Ching Chang ◽  
Hsien-Da Huang ◽  
Chih-Yu Peng ◽  
Chun-Yi Chuang ◽  
...  

Abstract Dysbiosis of oral microbiome may dictate the progression of oral squamous cell carcinoma (OSCC). Yet, the composition of oral microbiome fluctuates by saliva and distinct sites of oral cavity and is affected by risky behaviors (smoking, drinking and betel quid chewing) and individuals’ oral health condition. To characterize the disturbances in the oral microbial population mainly due to oral tumorigenicity, we profiled the bacteria within the surface of OSCC lesion and its contralateral normal tissue from discovery (n = 74) and validation (n = 42) cohorts of male patients with cancers of the buccal mucosa. Significant alterations in the bacterial diversity and relative abundance of specific oral microbiota (most profoundly, an enrichment for genus Fusobacterium and the loss of genus Streptococcus in the tumor sites) were identified. Functional prediction of oral microbiome shown that microbial genes related to the metabolism of terpenoids and polyketides were differentially enriched between the control and tumor groups, indicating a functional role of oral microbiome in formulating a tumor microenvironment via attenuated biosynthesis of secondary metabolites with anti-cancer effects. Furthermore, the vast majority of microbial signatures detected in the discovery cohort was generalized well to the independent validation cohort, and the clinical validity of these OSCC-associated microbes was observed and successfully replicated. Overall, our analyses reveal signatures (a profusion of Fusobacterium nucleatum CTI-2 and a decrease in Streptococcus pneumoniae) and functions (decreased production of tumor-suppressive metabolites) of oral microbiota related to oral cancer.


Sign in / Sign up

Export Citation Format

Share Document