scholarly journals Estimating Intraclonal Heterogeneity and Subpopulation Changes from Perturbational Bulk Gene Expression Profiles in LINCS L1000 CMap by Premnas

2021 ◽  
Author(s):  
Chiao-Yu Hsieh ◽  
Ching-Chih Tu ◽  
Jui-Hung Hung

The connectivity among signatures upon perturbations curated in the CMap library provides a valuable resource for understanding therapeutic pathways and biological processes associated with the drugs and diseases. However, due to the nature of bulk-level expression profiling by the L1000 assay, intraclonal heterogeneity and subpopulation compositional change that could contribute to the responses to perturbations are largely neglected, hampering the interpretability and reproducibility of the connections. In this work, we proposed a computational framework, Premnas, to estimate the abundance of undetermined subpopulations from L1000 profiles in CMap directly according to an ad hoc subpopulation representation learned from a well-normalized batch of single-cell RNA-seq datasets by the archetypal analysis. By recovering the information of subpopulation changes upon perturbation, the potentials of searching for drug cocktails and drug-resistant/susceptible subpopulations with CMap L1000 were further explored and examined. The proposed framework enables a new perspective to understand the connectivity among cellular signatures and expands the scope of the CMAP and other similar perturbation datasets limited by the bulk profiling technology. The executable and source code of Premnas is freely available at https://github.com/jhhung/Premnas.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Hai-Yan Yin ◽  
Yong Tang ◽  
Sheng-Feng Lu ◽  
Ling Luo ◽  
Jia-Ping Wang ◽  
...  

As a major alternative therapy in Traditional Chinese Medicine, it has been demonstrated that moxibustion could generate a series of molecular events in blood, spleen, and brain, and so forth. However, what would happen at the moxibustioned site remained unclear. To answer this question, we performed a microarray analysis with skin tissue taken from the moxibustioned site also Zusanli acupoint (ST36) where 15-minute moxibustion stimulation was administrated. The results exhibited 145 upregulated and 72 downregulated genes which responded immediately under physiological conditions, and 255 upregulated and 243 downregulated genes under pathological conditions. Interestingly, most of the pathways and biological processes of the differentially expressed genes (DEGs) under pathological conditions get involved in immunity, while those under physiological conditions are involved in metabolism.


Endocrinology ◽  
2008 ◽  
Vol 149 (10) ◽  
pp. 5107-5117 ◽  
Author(s):  
Agnès Burniat ◽  
Ling Jin ◽  
Vincent Detours ◽  
Natacha Driessens ◽  
Jean-Christophe Goffard ◽  
...  

We studied gene expression profiles in two mouse models of human thyroid carcinoma: the Tg-RET/PTC3 (RP3) and Tg-E7 mice. RP3 fusion gene is the most frequent mutation found in the first wave post-Chernobyl papillary thyroid cancers (PTCs). E7 is an oncoprotein derived from the human papillomavirus 16 responsible for most cervical carcinoma in women. Both transgenic mice develop thyroid hyperplasia followed by solid differentiated carcinoma in older animals. To understand the different steps leading to carcinoma, we analyzed thyroid gene expression in both strains at different ages by microarray technology. Important biological processes were differentially regulated in the two tumor types. In E7 thyroids, cell cycle was the most up-regulated process, an observation consistent with the huge size of these tumors. In RP3 thyroids, contrary to E7 tumors, several human PTC characteristics were observed: overexpression of many immune-related genes, regulation of human PTC markers, up-regulation of EGF-like growth factors and significant regulation of angiogenesis and extracellular matrix remodeling-related genes. However, similarities were incomplete; they did not concern the overall gene expression and were not conserved in old animals. Therefore, RP3 tumors are partial and transient models of human PTC. They constitute a good model, especially in young animals, to study the respective role of the biological processes shared with human PTC and will allow testing drugs targeting these validated variables.


2021 ◽  
Author(s):  
Taguchi Y-h. ◽  
Turki Turki

Abstract The integrated analysis of multiple gene expression profiles measured in distinct studies is always problematic. Especially, missing sample matching and missing common labeling between distinct studies prevent the integration of multiple studies in fully data-driven and unsupervised manner. In this study, we propose a strategy enabling the integration of multiple gene expression profiles among multiple independent studies without either labeling or sample matching, using tensor decomposition-based unsupervised feature extraction. As an example, we applied this strategy to Alzheimer’s disease (AD)-related gene expression profiles that lack exact correspondence among samples as well as AD single-cell RNA-seq (scRNA-seq) data. We found that we could select biologically reasonable genes with integrated analysis. Overall, integrated gene expression profiles can function analogously to prior learning and/or transfer learning strategies in other machine learning applications. For scRNA-seq, the proposed approach was able to drastically reduce the required computational memory.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11429
Author(s):  
Zhaoping Liu ◽  
Yanyan Wang ◽  
Zhenru Xu ◽  
Shunling Yuan ◽  
Yanglin Ou ◽  
...  

Background Drug resistance is the main obstacle in the treatment of leukemia. As a member of the competitive endogenous RNA (ceRNA) mechanism, underlying roles of lncRNA are rarely reported in drug-resistant leukemia cells. Methods The gene expression profiles of lncRNAs and mRNAs in doxorubicin-resistant K562/ADR and sensitive K562 cells were established by RNA sequencing (RNA-seq). Expression of differentially expressed lncRNAs (DElncRNAs) and DEmRNAs was validated by qRT-PCR. The potential biological functions of DElncRNAs targets were identified by GO and KEGG pathway enrichment analyses, and the lncRNA-miRNA-mRNA ceRNA network was further constructed. K562/ADR cells were transfected with CCDC26 and LINC01515 siRNAs to detect the mRNA levels of GLRX5 and DICER1, respectively. The cell survival rate after transfection was detected by CCK-8 assay. Results The ceRNA network was composed of 409 lncRNA-miRNA pairs and 306 miRNA-mRNA pairs based on 67 DElncRNAs, 58 DEmiRNAs and 192 DEmRNAs. Knockdown of CCDC26 and LINC01515 increased the sensitivity of K562/ADR cells to doxorubicin and significantly reduced the half-maximal inhibitory concentration (IC50) of doxorubicin. Furthermore, knockdown of GLRX5 and DICER1 increased the sensitivity of K562/ADR cells to doxorubicin and significantly reduced the IC50 of doxorubicin. Conclusions The ceRNA regulatory networks may play important roles in drug resistance of leukemia cells. CCDC26/miR-140-5p/GLRX5 and LINC01515/miR-425-5p/DICER1 may be potential targets for drug resistance in K562/ADR cells. This study provides a promising strategy to overcome drug resistance and deepens the understanding of the ceRNA regulatory mechanism related to drug resistance in CML cells.


Author(s):  
Haowei Zhang ◽  
Yujin Ding ◽  
Qin Zeng ◽  
Dandan Wang ◽  
Ganglei Liu ◽  
...  

Background: Mesenteric adipose tissue (MAT) plays a critical role in the intestinal physiological ecosystems. Small and large intestines have evidently intrinsic and distinct characteristics. However, whether there exist any mesenteric differences adjacent to the small and large intestines (SMAT and LMAT) has not been properly characterized. We studied the important facets of these differences, such as morphology, gene expression, cell components and immune regulation of MATs, to characterize the mesenteric differences. Methods: The SMAT and LMAT of mice were utilized for comparison of tissue morphology. Paired mesenteric samples were analyzed by RNA-seq to clarify gene expression profiles. MAT partial excision models were constructed to illustrate the immune regulation roles of MATs, and 16S-seq was applied to detect the subsequent effect on microbiota. Results: Our data show that different segments of mesenteries have different morphological structures. SMAT not only has smaller adipocytes but also contains more fat-associated lymphoid clusters than LMAT. The gene expression profile is also discrepant between these two MATs in mice. B-cell markers were abundantly expressed in SMAT, while development-related genes were highly expressed in LMAT. Adipose-derived stem cells of LMAT exhibited higher adipogenic potential and lower proliferation rates than those of SMAT. In addition, SMAT and LMAT play different roles in immune regulation and subsequently affect microbiota components. Finally, our data clarified the described differences between SMAT and LMAT in humans. Conclusions: There were significant differences in cell morphology, gene expression profiles, cell components, biological characteristics, and immune and microbiota regulation roles between regional MATs.


2020 ◽  
Vol 21 (3) ◽  
pp. 861 ◽  
Author(s):  
Yingdan Yuan ◽  
Bo Zhang ◽  
Xinggang Tang ◽  
Jinchi Zhang ◽  
Jie Lin

Dendrobium is widely used in traditional Chinese medicine, which contains many kinds of active ingredients. In recent years, many Dendrobium transcriptomes have been sequenced. Hence, weighted gene co-expression network analysis (WGCNA) was used with the gene expression profiles of active ingredients to identify the modules and genes that may associate with particular species and tissues. Three kinds of Dendrobium species and three tissues were sampled for RNA-seq to generate a high-quality, full-length transcriptome database. Based on significant changes in gene expression, we constructed co-expression networks and revealed 19 gene modules. Among them, four modules with properties correlating to active ingredients regulation and biosynthesis, and several hub genes were selected for further functional investigation. This is the first time the WGCNA method has been used to analyze Dendrobium transcriptome data. Further excavation of the gene module information will help us to further study the role and significance of key genes, key signaling pathways, and regulatory mechanisms between genes on the occurrence and development of medicinal components of Dendrobium.


2020 ◽  
Author(s):  
Eliah G. Overbey ◽  
Amanda M. Saravia-Butler ◽  
Zhe Zhang ◽  
Komal S. Rathi ◽  
Homer Fogle ◽  
...  

SummaryWith the development of transcriptomic technologies, we are able to quantify precise changes in gene expression profiles from astronauts and other organisms exposed to spaceflight. Members of NASA GeneLab and GeneLab-associated analysis working groups (AWGs) have developed a consensus pipeline for analyzing short-read RNA-sequencing data from spaceflight-associated experiments. The pipeline includes quality control, read trimming, mapping, and gene quantification steps, culminating in the detection of differentially expressed genes. This data analysis pipeline and the results of its execution using data submitted to GeneLab are now all publicly available through the GeneLab database. We present here the full details and rationale for the construction of this pipeline in order to promote transparency, reproducibility and reusability of pipeline data, to provide a template for data processing of future spaceflight-relevant datasets, and to encourage cross-analysis of data from other databases with the data available in GeneLab.


2021 ◽  
Author(s):  
Jakub Jankowski ◽  
Hye Kyung Lee ◽  
Julia Wilflingseder ◽  
Lothar Hennighausen

SummaryRecently, a short, interferon-inducible isoform of Angiotensin-Converting Enzyme 2 (ACE2), dACE2 was identified. ACE2 is a SARS-Cov-2 receptor and changes in its renal expression have been linked to several human nephropathies. These changes were never analyzed in context of dACE2, as its expression was not investigated in the kidney. We used Human Primary Proximal Tubule (HPPT) cells to show genome-wide gene expression patterns after cytokine stimulation, with emphasis on the ACE2/dACE2 locus. Putative regulatory elements controlling dACE2 expression were identified using ChIP-seq and RNA-seq. qRT-PCR differentiating between ACE2 and dACE2 revealed 300- and 600-fold upregulation of dACE2 by IFNα and IFNβ, respectively, while full length ACE2 expression was almost unchanged. JAK inhibitor ruxolitinib ablated STAT1 and dACE2 expression after interferon treatment. Finally, with RNA-seq, we identified a set of genes, largely immune-related, induced by cytokine treatment. These gene expression profiles provide new insights into cytokine response of proximal tubule cells.


Sign in / Sign up

Export Citation Format

Share Document