regulatory networks
Recently Published Documents


TOTAL DOCUMENTS

6706
(FIVE YEARS 2367)

H-INDEX

136
(FIVE YEARS 21)

2022 ◽  
Vol 423 ◽  
pp. 127140
Author(s):  
Tingting Su ◽  
Liangbo Fu ◽  
Liuhui Kuang ◽  
Danyi Chen ◽  
Guoping Zhang ◽  
...  

BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Biplabendu Das ◽  
Charissa de Bekker

Abstract Background Circadian clocks allow organisms to anticipate daily fluctuations in their environment by driving rhythms in physiology and behavior. Inter-organismal differences in daily rhythms, called chronotypes, exist and can shift with age. In ants, age, caste-related behavior and chronotype appear to be linked. Brood-tending nurse ants are usually younger individuals and show “around-the-clock” activity. With age or in the absence of brood, nurses transition into foraging ants that show daily rhythms in activity. Ants can adaptively shift between these behavioral castes and caste-associated chronotypes depending on social context. We investigated how changes in daily gene expression could be contributing to such behavioral plasticity in Camponotus floridanus carpenter ants by combining time-course behavioral assays and RNA-Sequencing of forager and nurse brains. Results We found that nurse brains have three times fewer 24 h oscillating genes than foragers. However, several hundred genes that oscillated every 24 h in forager brains showed robust 8 h oscillations in nurses, including the core clock genes Period and Shaggy. These differentially rhythmic genes consisted of several components of the circadian entrainment and output pathway, including genes said to be involved in regulating insect locomotory behavior. We also found that Vitellogenin, known to regulate division of labor in social insects, showed robust 24 h oscillations in nurse brains but not in foragers. Finally, we found significant overlap between genes differentially expressed between the two ant castes and genes that show ultradian rhythms in daily expression. Conclusion This study provides a first look at the chronobiological differences in gene expression between forager and nurse ant brains. This endeavor allowed us to identify a putative molecular mechanism underlying plastic timekeeping: several components of the ant circadian clock and its output can seemingly oscillate at different harmonics of the circadian rhythm. We propose that such chronobiological plasticity has evolved to allow for distinct regulatory networks that underlie behavioral castes, while supporting swift caste transitions in response to colony demands. Behavioral division of labor is common among social insects. The links between chronobiological and behavioral plasticity that we found in C. floridanus, thus, likely represent a more general phenomenon that warrants further investigation.


2022 ◽  
Vol 8 ◽  
Author(s):  
Eric Schoger ◽  
Sara Lelek ◽  
Daniela Panáková ◽  
Laura Cecilia Zelarayán

Molecular and genetic differences between individual cells within tissues underlie cellular heterogeneities defining organ physiology and function in homeostasis as well as in disease states. Transcriptional control of endogenous gene expression has been intensively studied for decades. Thanks to a fast-developing field of single cell genomics, we are facing an unprecedented leap in information available pertaining organ biology offering a comprehensive overview. The single-cell technologies that arose aided in resolving the precise cellular composition of many organ systems in the past years. Importantly, when applied to diseased tissues, the novel approaches have been immensely improving our understanding of the underlying pathophysiology of common human diseases. With this information, precise prediction of regulatory elements controlling gene expression upon perturbations in a given cell type or a specific context will be realistic. Simultaneously, the technological advances in CRISPR-mediated regulation of gene transcription as well as their application in the context of epigenome modulation, have opened up novel avenues for targeted therapy and personalized medicine. Here, we discuss the fast-paced advancements during the recent years and the applications thereof in the context of cardiac biology and common cardiac disease. The combination of single cell technologies and the deep knowledge of fundamental biology of the diseased heart together with the CRISPR-mediated modulation of gene regulatory networks will be instrumental in tailoring the right strategies for personalized and precision medicine in the near future. In this review, we provide a brief overview of how single cell transcriptomics has advanced our knowledge and paved the way for emerging CRISPR/Cas9-technologies in clinical applications in cardiac biomedicine.


2022 ◽  
pp. 1-12
Author(s):  
Zhengfei Ma ◽  
Ping Zhong ◽  
Peidong Yue ◽  
Zhongwu Sun

<b><i>Background:</i></b> Intracranial aneurysm (IA) is a serious cerebrovascular disease. The identification of key regulatory genes can provide research directions for early diagnosis and treatment of IA. <b><i>Methods:</i></b> Initially, the miRNA and mRNA data were downloaded from the Gene Expression Omnibus database. Subsequently, the limma package in R was used to screen for differentially expressed genes. In order to investigate the function of the differentially expressed genes, a functional enrichment analysis was performed. Moreover, weighted gene co-expression network analysis (WGCNA) was performed to identify the hub module and hub miRNAs. The correlations between miRNAs and mRNAs were assessed by constructing miRNA-mRNA regulatory networks. In addition, in vitro validation was performed. Finally, diagnostic analysis and electronic expression verification were performed on the GSE122897 dataset. <b><i>Results:</i></b> In the present study, 955 differentially expressed mRNAs (DEmRNAs, 480 with increased and 475 with decreased expression) and 46 differentially expressed miRNAs (DEmiRNAs, 36 with increased and 10 with decreased expression) were identified. WGCNA demonstrated that the yellow module was the hub module. Moreover, 16 hub miRNAs were identified. A total of 1,124 negatively regulated miRNA-mRNA relationship pairs were identified. Functional analysis demonstrated that DEmRNAs in the targeted network were enriched in vascular smooth muscle contraction and focal adhesion pathways. In addition, the area under the curve of 16 hub miRNAs was &#x3e;0.8. It is implied that 16 hub miRNAs may be used as potential diagnostic biomarkers of IA. <b><i>Conclusion:</i></b> Hub miRNAs and key signaling pathways were identified by bioinformatics analysis. This evidence lays the foundation for understanding the underlying molecular mechanisms of IA and provided potential therapeutic targets for the treatment of this disease.


2022 ◽  
Author(s):  
Pradyumna Harlapur ◽  
Atchuta Srinivas Duddu ◽  
Kishore Hari ◽  
Mohit Kumar Jolly

Elucidating the design principles of regulatory networks driving cellular decision-making has important implications in understanding cell differentiation and guiding the design of synthetic circuits. Mutually repressing feedback loops between 'master regulators' of cell-fates can exhibit multistable dynamics, thus enabling multiple 'single-positive' phenotypes: (high A, low B) and (low A, high B) for a toggle switch, and (high A, low B, low C), (low A, high B, low C) and (low A, low B, high C) for a toggle triad. However, the dynamics of these two network motifs has been interrogated in isolation in silico, but in vitro and in vivo, they often operate while embedded in larger regulatory networks. Here, we embed these network motifs in complex larger networks of varying sizes and connectivity and identify conditions under which these motifs maintain their canonical dynamical behavior, thus identifying hallmarks of their functional resilience. We show that the in-degree of a motif - defined as the number of incoming edges onto a motif - determines its functional properties. For a smaller in-degree, the functional traits for both these motifs (bimodality, pairwise correlation coefficient(s), and the frequency of 'single-positive' phenotypes) are largely conserved, but increasing the in-degree can lead to a divergence from their stand-alone behaviors. These observations offer insights into design principles of biological networks containing these network motifs, as well as help devise optimal strategies for integration of these motifs into larger synthetic networks.


eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Minyan Zheng ◽  
Olga Zueva ◽  
Veronica Hinman

The ability to restore lost body parts following traumatic injury is a fascinating area of biology that challenges current understanding of the ontogeny of differentiation. The origin of new cells needed to regenerate lost tissue, and whether they are pluripotent stem cells, tissue-specific stem cells or have de- or trans- differentiated, remains one of the most important open questions in regeneration. Additionally, it is not clearly known whether developmental gene regulatory networks (GRNs) are reused to direct specification in these cells or whether regeneration specific networks are deployed. Echinoderms, including sea stars, have extensive ability for regeneration and have therefore been the subject of many thorough studies on the ultrastructural and molecular properties of cells needed for regeneration. However, the technologies for obtaining transgenic echinoderms are limited and tracking cells involved in regeneration, and thus identifying the cellular sources and potencies has proven challenging. In this study we develop new transgenic tools to follow the fate of populations of cells in the regenerating bipinnaria larva of the sea star Patira minaita. We show that the larval serotonergic nervous system can regenerate following decapitation. Using a BAC-transgenesis approach with photoconvertible fluorescent proteins, we show that expression of the pan ectodermal marker, sox2, is induced in previously sox2 minus cells at the wound site, even when cell division is inhibited. sox2+ cells give rise to new sox4+ neural precursors that then proceed along an embryonic neurogenesis pathway to reform the anterior nervous systems. sox2+ cells contribute to only neural and ectoderm lineages, indicating that these progenitors maintain their normal, embryonic lineage restriction. This indicates that sea star larval regeneration uses a combination of existing lineage restricted stem cells, as well as respecification of cells into neural lineages, and at least partial reuse of developmental GRNs to regenerate their nervous system.


Sign in / Sign up

Export Citation Format

Share Document