Sulfonylureas target the neurovascular response to decrease Alzheimer's pathology
Hyperexcitability is a defining feature of Alzheimer's disease (AD), where aberrant neuronal activity is both a cause and consequence of AD. Therefore, identifying novel targets that modulate cellular excitability is an important strategy for treating AD. ATP-sensitive potassium (KATP) channels are metabolic sensors that modulate cellular excitability. Sulfonylureas are KATP channel antagonists traditionally used to combat hyperglycemia in diabetic patients by inhibiting pancreatic KATP channels, thereby stimulating insulin release. However, KATP channels are not limited to the pancreas and systemic modulation of KATP channels has pleotropic physiological effects, including profound effects on vascular function. Here, we demonstrate that human AD patients have higher cortical expression of vascular KATP channels, important modulators of vasoreactivity. We demonstrate that peripheral treatment with the sulfonylurea and KATP channel inhibitor, glyburide, reduced the aggregation and activity-dependent production of amyloid-beta (Aβ), a hallmark of AD, in mice. Since glyburide does not readily cross the blood brain barrier, our data suggests that glyburide targets vascular KATP channel activity to reduce arterial stiffness, improve vasoreactivity, and normalize pericyte-endothelial cell morphology, offering a novel therapeutic target for AD.