cellular excitability
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 31)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Samuel A Bentley ◽  
Vasileios Anagnostidis ◽  
Hannah Laeverenz Schlogelhofer ◽  
Fabrice Gielen ◽  
Kirsty Y Wan

At all scales, the movement patterns of organisms serve as dynamic read-outs of their behaviour and physiology. We devised a novel droplet microfluidics assay to encapsulate single algal microswimmers inside closed arenas, and comprehensively studied their roaming behaviour subject to a large number of environmental stimuli. We compared two model species, Chlamydomonas reinhardtii (freshwater alga, 2 cilia), and Pyramimonas octopus (marine alga, 8 cilia), and detailed their highly-stereotyped behaviours and the emergence of a trio of macroscopic swimming states (smooth-forward, quiescent, tumbling or excitable backward). Harnessing ultralong timeseries statistics, we reconstructed the species-dependent reaction network that underlies the choice of locomotor behaviour in these aneural organisms, and discovered the presence of macroscopic non-equilibrium probability fluxes in these active systems. We also revealed for the first time how microswimmer motility changes instantaneously when a chemical is added to their microhabitat, by inducing deterministic fusion between paired droplets - one containing a trapped cell, and the other, a pharmacological agent that perturbs cellular excitability. By coupling single-cell entrapment with unprecedented tracking resolution, speed and duration, our approach offers unique and potent opportunities for diagnostics, drug-screening, and for querying the genetic basis of micro-organismal behaviour.


2021 ◽  
Vol 160 ◽  
pp. 105529
Author(s):  
Vanessa L. Breton ◽  
Mark S. Aquilino ◽  
Srinivasarao Repudi ◽  
Afifa Saleem ◽  
Shanthini Mylvaganam ◽  
...  

2021 ◽  
Vol 22 (17) ◽  
pp. 9320
Author(s):  
Eun-Jin Kim ◽  
Oh-Sang Kwon ◽  
Chang-Gi Hur ◽  
Marie Merci Nyiramana ◽  
Dong-Kun Lee ◽  
...  

The two-pore domain K+ (K2P) channel, which is involved in setting the resting membrane potential in neurons, is an essential target for receptor agonists. Activation of the γ-aminobutyric acid (GABA) receptors (GABAAR and GABABR) reduces cellular excitability through Cl- influx and K+ efflux in neurons. Relatively little is known about the link between GABAAR and the K+ channel. The present study was performed to identify the effect of GABAR agonists on K2P channel expression and activity in the neuroblastic B35 cells that maintain glutamic acid decarboxylase (GAD) activity and express GABA. TASK and TREK/TRAAK mRNA were expressed in B35 cells with a high level of TREK-2 and TRAAK. In addition, TREK/TRAAK proteins were detected in the GABAergic neurons obtained from GABA transgenic mice. Furthermore, TREK-2 mRNA and protein expression levels were markedly upregulated in B35 cells by GABAAR and GABABR agonists. In particular, muscimol, a GABAAR agonist, significantly increased TREK-2 expression and activity, but the effect was reduced in the presence of the GABAAR antagonist bicuculine or TREK-2 inhibitor norfluoxetine. In the whole-cell and single-channel patch configurations, muscimol increased TREK-2 activity, but the muscimol effect disappeared in the N-terminal deletion mutant. These results indicate that muscimol directly induces TREK-2 activation through the N-terminus and suggest that muscimol can reduce cellular excitability by activating the TREK-2 channel and by inducing Cl- influx in GABAergic neurons.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yuncheng Luo ◽  
Lu Huang ◽  
Ping Liao ◽  
Ruotian Jiang

Two-pore-domain potassium (K2P) channels are widespread in the nervous system and play a critical role in maintaining membrane potential in neurons and glia. They have been implicated in many stress-relevant neurological disorders, including pain, sleep disorder, epilepsy, ischemia, and depression. K2P channels give rise to leaky K+ currents, which stabilize cellular membrane potential and regulate cellular excitability. A range of natural and chemical effectors, including temperature, pressure, pH, phospholipids, and intracellular signaling molecules, substantially modulate the activity of K2P channels. In this review, we summarize the contribution of K2P channels to neuronal excitability and to potassium homeostasis in glia. We describe recently discovered functions of K2P channels in glia, such as astrocytic passive conductance and glutamate release, microglial surveillance, and myelin generation by oligodendrocytes. We also discuss the potential role of glial K2P channels in neurological disorders. In the end, we discuss current limitations in K2P channel researches and suggest directions for future studies.


2021 ◽  
Author(s):  
Shannon L. Macauley ◽  
Molly Stanley ◽  
Emily E Caesar ◽  
William R Moritz ◽  
Annie R Bice ◽  
...  

Hyperexcitability is a defining feature of Alzheimer's disease (AD), where aberrant neuronal activity is both a cause and consequence of AD. Therefore, identifying novel targets that modulate cellular excitability is an important strategy for treating AD. ATP-sensitive potassium (KATP) channels are metabolic sensors that modulate cellular excitability. Sulfonylureas are KATP channel antagonists traditionally used to combat hyperglycemia in diabetic patients by inhibiting pancreatic KATP channels, thereby stimulating insulin release. However, KATP channels are not limited to the pancreas and systemic modulation of KATP channels has pleotropic physiological effects, including profound effects on vascular function. Here, we demonstrate that human AD patients have higher cortical expression of vascular KATP channels, important modulators of vasoreactivity. We demonstrate that peripheral treatment with the sulfonylurea and KATP channel inhibitor, glyburide, reduced the aggregation and activity-dependent production of amyloid-beta (Aβ), a hallmark of AD, in mice. Since glyburide does not readily cross the blood brain barrier, our data suggests that glyburide targets vascular KATP channel activity to reduce arterial stiffness, improve vasoreactivity, and normalize pericyte-endothelial cell morphology, offering a novel therapeutic target for AD.


2021 ◽  
Author(s):  
Elor Arieli ◽  
Nadia Younis ◽  
Anan Moran

Acquiring new memories is a multi-stage process. Ample of studies have convincingly demonstrated that initially acquired memories are labile, and only stabilized by later consolidation processes. These multiple phases of memory formation are known to involve modification of both cellular excitability and synaptic connectivity, which in turn change neuronal activity at both the single neuron and ensemble levels. However, the specific mapping between the known phases of memory and the observed changes in neuronal activity remains unknown. Here we address this unknown in the context of conditioned taste aversion learning by continuously tracking gustatory cortex (GC) neuronal taste responses from alert rats in the 24 hours following a taste-malaise pairing. We found that the progression of neuronal activity changes in the GC depend on the neuronal organizational level. The population response changed continuously; these changes, however, were only reflected in the population mean amplitude during the acquisition and consolidation phases, and in the known quickening of the ensemble state dynamics after the time of consolidation. Together our results demonstrate how complex dynamics in different representational level of cortical activity underlie the formation and stabilization of memory within the cortex.


2021 ◽  
Vol 29 ◽  
Author(s):  
Andressa Sampaio Pereira ◽  
Patrícia de Morais Ferreira Brandão ◽  
Jerónimo A Auzmend ◽  
Alberto Lazarowski

Epilepsy is one of the neurological diseases of complex etiology that affects around 50 million people worldwide and is characterized by abnormal electrical activity and recurrent seizures. Uncontrolled generalized repetitive tonic-clonic seizures (GTCS) are the main causes of unexpected sudden death in epilepsy (SUDEP). Hypoxic stress induced by seizure results in neurocardiogenic dysfunctions, including iron overload and cardiomyopathy (IOC) which is related to severe lipid peroxidation caused by the production of reactive oxygen species (ROS). ROS induces recurrent seizure activity, favoring the overexpression of P glycoprotein (P-gp) in the heart. P-gp plays a depolarizing role in cardiomyocyte membranes and potassium (Kir) channels control cellular excitability regarding the repolarization of the cardiac action potential. All these events result in a possible appearance of severe bradycardia and fatal arrhythmia. Several studies have sought evidence for different possible biomarkers for potential prediction of the risk of SUDEP avoiding its fatal outcome.


2021 ◽  
Author(s):  
Luis E Martinetti ◽  
Kelly E Bonekamp ◽  
Dawn M Autio ◽  
Shane R Crandall

Synapses are continually regulated by their own activity. In the neocortex, direct interactions between cortical areas play a central role in cognitive function, but the dynamic regulation of these long-range corticocortical synapses by activity and their impact on a postsynaptic target neuron is unclear. Here, we use an optogenetic strategy to study the connections between mouse somatosensory and motor cortex. We found that short-term synaptic facilitation was strong in both corticocortical synapses, resulting in far more sustained responses than local intra-cortical and thalamocortical connections. This facilitation was dependent on the presynaptic calcium sensor synaptotagmin-7 and altered by several optogenetic approaches. Recordings revealed that during repetitive activation, the short-term dynamics of corticocortical synapses enhanced the excitability of layer 2/3 pyramidal neurons, increasing the probability of spiking with activity. Furthermore, the properties of the connections linking primary with secondary somatosensory cortex resemble those between somatosensory-motor areas. These results reveal a synaptic mechanism by which corticocortical projections may mediate specific changes in cellular excitability over relatively extended periods.


2021 ◽  
Vol 14 ◽  
Author(s):  
Deepanjali Dwivedi ◽  
Upinder S. Bhalla

SK, HCN, and M channels are medium afterhyperpolarization (mAHP)-mediating ion channels. The three channels co-express in various brain regions, and their collective action strongly influences cellular excitability. However, significant diversity exists in the expression of channel isoforms in distinct brain regions and various subcellular compartments, which contributes to an equally diverse set of specific neuronal functions. The current review emphasizes the collective behavior of the three classes of mAHP channels and discusses how these channels function together although they play specialized roles. We discuss the biophysical properties of these channels, signaling pathways that influence the activity of the three mAHP channels, various chemical modulators that alter channel activity and their therapeutic potential in treating various neurological anomalies. Additionally, we discuss the role of mAHP channels in the pathophysiology of various neurological diseases and how their modulation can alleviate some of the symptoms.


Author(s):  
Nnodim Johnkennedy ◽  
Bako Hauwa ◽  
Ezekwesiri Cletus

Ion channels are membrane proteins, which play a great role in regulating cellular excitability. Alteration of ion channel may contribute to prostate cancer. This could be linked to inherited mutations of ion channel genes which alter channel’s biophysical properties, in a prostate cancer. It is an observed fact that genomic instability is the main cause as well as the major characteristics of prostate cancer. Prostate cancer cell genotypes are mainly characterized by uncontrolled metastasis, resistance to programmed cell death, sustained angiogenesis as well as tissue invasion and metastasis. It is known that genes encoding ion channels are affected in prostate cancer. The Membrane proteins which is involved in signaling in cell and among cells, for coupling of extracellular events with intracellular responses, and for maintaining intracellular ionic homeostasis ion channels which contribute to some extents to pathophysiological features of each prostate cancer.


Sign in / Sign up

Export Citation Format

Share Document