scholarly journals A Delay Differential Equation approach to model the COVID-19 pandemic

Author(s):  
Ilya Kiselev ◽  
I.R. Akberdin ◽  
F.A. Kolpakov

SEIR (Susceptible - Exposed - Infected - Recovered) approach is a classic modeling method that has frequently been applied to the study of infectious disease epidemiology. However, in the vast majority of SEIR models and models derived from them transitions from one population group to another are described using the mass-action law which assumes population homogeneity. That causes some methodological limitations or even drawbacks, particularly inability to reproduce observable dynamics of key characteristics of infection such as, for example, the incubation period and progression of the disease's symptoms which require considering different time scales as well as probabilities of different disease trajectories. In this paper, we propose an alternative approach to simulate the epidemic dynamics that is based on a system of differential equations with time delays to precisely reproduce a duration of infectious processes (e.g. incubation period of the virus) and competing processes like transition from infected state to the hospitalization or recovery. The suggested modeling approach is fundamental and can be applied to the study of many infectious disease epidemiology. However, due to the urgency of the COVID-19 pandemic we have developed and calibrated the delay-based model of the epidemic in Germany and France using the BioUML platform. Additionally, the stringency index was used as a generalized characteristic of the non-pharmaceutical government interventions implemented in corresponding countries to contain the virus spread. The numerical analysis of the calibrated model demonstrates that adequate simulation of each new wave of the SARS-CoV-2 virus spread requires dynamic changes in the parameter values during the epidemic like reduction of the population adherence to non-pharmaceutical interventions or enhancement of the infectivity parameter caused by an emergence of novel virus strains with higher contagiousness than original one. Both models may be accessed and simulated at https://gitlab.sirius-web.org/covid-19/dde-epidemiology-model utilizing visual representation as well as Jupyter Notebook.

2019 ◽  
Vol 23 (3) ◽  
pp. 328-334
Author(s):  
E. Ya. Yanchevskaya ◽  
O. A. Mesnyankina

Mathematical modeling of diseases is an urgent problem in the modern world. More and more researchers are turning to mathematical models to predict a particular disease, as they help the most correct and accurate study of changes in certain processes occurring in society. Mathematical modeling is indispensable in certain areas of medicine, where real experiments are impossible or difficult, for example, in epidemiology. The article is devoted to the historical aspects of studying the possibilities of mathematical modeling in medicine. The review demonstrates the main stages of development, achievements and prospects of this direction.


2005 ◽  
pp. 1327-1362
Author(s):  
Susanne Straif-Bourgeois ◽  
Raoult Ratard

Author(s):  
Odo Diekmann ◽  
Hans Heesterbeek ◽  
Tom Britton

The basic reproduction number (or ratio) R₀ is arguably the most important quantity in infectious disease epidemiology. It is among the quantities most urgently estimated for infectious diseases in outbreak situations, and its value provides insight when designing control interventions for established infections. From a theoretical point of view R₀ plays a vital role in the analysis of, and consequent insight from, infectious disease models. There is hardly a paper on dynamic epidemiological models in the literature where R₀ does not play a role. R₀ is defined as the average number of new cases of an infection caused by one typical infected individual, in a population consisting of susceptibles only. This chapter shows how R₀ can be characterized mathematically and provides detailed examples of its calculation in terms of parameters of epidemiological models, culminating in a set of algorithms (or “recipes”) for the calculation for compartmental epidemic systems.


Sign in / Sign up

Export Citation Format

Share Document