scholarly journals Whole-brain fluorescence-MRI coregistration for precise anatomical mapping of virus infection

2021 ◽  
Author(s):  
Nunya Chotiwan ◽  
Stefanie M.A. Willekens ◽  
Erin Schexnaydre ◽  
Max Hahn ◽  
Federico Morini ◽  
...  

Neurotropic virus infections cause tremendous disease burden. Methods visualizing infection in the whole brain remain unavailable which greatly impedes understanding of viral neurotropism and pathogenesis. We devised an approach to visualize the distribution of neurotropic virus infection in whole mouse brain ex vivo. Optical projection tomography (OPT) signal was coregistered with a unique magnetic resonance imaging (MRI) brain template, enabling precise anatomical mapping of viral distribution, and the effect of type I interferon on distribution of infection was analyzed. Guided by OPT-MR, we show that Langat virus specifically targets sensory brain systems and the lack of type I interferon response results in an anatomical shift in infection patterns in the brain. We confirm this regional tropism, observed with whole brain OPT-MRI, by confocal and electron microscopy to provide unprecedented insight into viral neurotropism. This approach can be applied to any fluorescently labeled target in the brain.

mBio ◽  
2016 ◽  
Vol 7 (2) ◽  
Author(s):  
Douglas R. Wilcox ◽  
Stephen S. Folmsbee ◽  
William J. Muller ◽  
Richard Longnecker

ABSTRACTNewborns are significantly more susceptible to severe viral encephalitis than adults, with differences in the host response to infection implicated as a major factor. However, the specific host signaling pathways responsible for differences in susceptibility and neurologic morbidity have remained unknown. In a murine model of HSV encephalitis, we demonstrated that the choroid plexus (CP) is susceptible to herpes simplex virus 1 (HSV-1) early in infection of the newborn but not the adult brain. We confirmed susceptibility of the CP to HSV infection in a human case of newborn HSV encephalitis. We investigated components of the type I interferon (IFN) response in the murine brain that might account for differences in cell susceptibility and found that newborns have a dampened interferon response and significantly lower basal levels of the alpha/beta interferon (IFN-α/β) receptor (IFNAR) than do adults. To test the contribution of IFNAR to restricting infection from the CP, we infected IFNAR knockout (KO) adult mice, which showed restored CP susceptibility to HSV-1 infection in the adult. Furthermore, reduced IFNAR levels did not account for differences we found in the basal levels of several other innate signaling proteins in the wild-type newborn and the adult, including protein kinase R (PKR), that suggested specific regulation of innate immunity in the developing brain. Viral targeting of the CP, a region of the brain that plays a critical role in neurodevelopment, provides a link between newborn susceptibility to HSV and long-term neurologic morbidity among survivors of newborn HSV encephalitis.IMPORTANCECompared to adults, newborns are significantly more susceptible to severe disease following HSV infection. Over half of newborn HSV infections result in disseminated disease or encephalitis, with long-term neurologic morbidity in 2/3 of encephalitis survivors. We investigated differences in host cell susceptibility between newborns and adults that contribute to severe central nervous system disease in the newborn. We found that, unlike the adult brain, the newborn choroid plexus (CP) was susceptible early in HSV-1 infection. We demonstrated that IFN-α/β receptor levels are lower in the newborn brain than in the adult brain and that deletion of this receptor restores susceptibility of the CP in the adult brain. The CP serves as a barrier between the blood and the cerebrospinal fluid and plays a role in proper neurodevelopment. Susceptibility of the newborn choroid plexus to HSV-1 has important implications in viral spread to the brain and, also, in the neurologic morbidity following HSV encephalitis.


2019 ◽  
Vol 10 ◽  
Author(s):  
Maja Studencka-Turski ◽  
Gonca Çetin ◽  
Heike Junker ◽  
Frédéric Ebstein ◽  
Elke Krüger

2013 ◽  
Vol 94 (2) ◽  
pp. 336-347 ◽  
Author(s):  
David G. Baker ◽  
Tyson A. Woods ◽  
Niranjan B. Butchi ◽  
Timothy M. Morgan ◽  
R. Travis Taylor ◽  
...  

Toll-like receptor 7 (TLR7) recognizes guanidine-rich viral ssRNA and is an important mediator of peripheral immune responses to several ssRNA viruses. However, the role that TLR7 plays in regulating the innate immune response to ssRNA virus infections in specific organs such as the central nervous system (CNS) is not as clear. This study examined the influence of TLR7 on the neurovirulence of Langat virus (LGTV), a ssRNA tick-borne flavivirus. TLR7 deficiency did not substantially alter the onset or incidence of LGTV-induced clinical disease; however, it did significantly affect virus levels in the CNS with a log10 increase in virus titres in brain tissue from TLR7-deficient mice. This difference in virus load was also observed following intracranial inoculation, indicating a direct effect of TLR7 deficiency on regulating virus replication in the brain. LGTV-induced type I interferon responses in the CNS were not dependent on TLR7, being higher in TLR7-deficient mice compared with wild-type controls. In contrast, induction of pro-inflammatory cytokines including tumour necrosis factor, CCL3, CCL4 and CXCL13 were dependent on TLR7. Thus, although TLR7 is not essential in controlling LGTV pathogenesis, it is important in controlling virus infection in neurons in the CNS, possibly by regulating neuroinflammatory responses.


2011 ◽  
Vol 17 (4) ◽  
pp. 353-367 ◽  
Author(s):  
Damien Chopy ◽  
Claudia N. Detje ◽  
Mireille Lafage ◽  
Ulrich Kalinke ◽  
Monique Lafon

2007 ◽  
Vol 88 (12) ◽  
pp. 3373-3384 ◽  
Author(s):  
Rennos Fragkoudis ◽  
Lucy Breakwell ◽  
Clive McKimmie ◽  
Amanda Boyd ◽  
Gerald Barry ◽  
...  

Semliki Forest virus (SFV) infection of the mouse provides a powerful model to study the pathogenesis of virus encephalitis. SFV and other alphavirus-based vector systems are increasingly used in biotechnology and medicine. This study analysed the strong susceptibility of this virus to type I interferon (IFN) responses. Following intraperitoneal infection of adult mice, SFV strain A7(74) was efficiently (100 %) neuroinvasive. In contrast, SFV4 was poorly (21 %) neuroinvasive. Upon entry into the brain, both viruses activated type I IFN responses. As determined by quantitative RT-PCR, activation of the IFN-α gene was proportional to virus RNA load. An intact type I IFN system was required for protection against both strains of SFV. IFN strongly curtailed virus spread in many cell types and in many tissues. In mice with an intact type I IFN system, infected cells were rarely observed and tissue tropism was difficult to determine. In the absence of a functional type I IFN system, the tropism and the potential for rapid and widespread infection of this virus was revealed. Virus infection was readily observed in the myocardium, endocardium, exocrine pancreas, adipose tissue, smooth muscle cells and in the brain in meningeal cells, ependymal cells and oligodendrocytes. In the brains of mice with and without type I IFN responses, virus infection of neurons remained rare and focal, indicating that the previously described restricted replication of SFV A7(74) in neurons is not mediated by type I IFN responses.


Sign in / Sign up

Export Citation Format

Share Document