interferon signaling
Recently Published Documents


TOTAL DOCUMENTS

789
(FIVE YEARS 286)

H-INDEX

74
(FIVE YEARS 11)

2022 ◽  
Vol 8 ◽  
Author(s):  
Tinghan Li ◽  
Yibo Wen ◽  
Hangtian Guo ◽  
Tingting Yang ◽  
Haitao Yang ◽  
...  

The accessory protein Orf6 is uniquely expressed in sarbecoviruses including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which is an ongoing pandemic. SARS-CoV-2 Orf6 antagonizes host interferon signaling by inhibition of mRNA nuclear export through its interactions with the ribonucleic acid export 1 (Rae1)–nucleoporin 98 (Nup98) complex. Here, we confirmed the direct tight binding of Orf6 to the Rae1-Nup98 complex, which competitively inhibits RNA binding. We determined the crystal structures of both SARS-CoV-2 and SARS-CoV-1 Orf6 C-termini in complex with the Rae1–Nup98 heterodimer. In each structure, SARS-CoV Orf6 occupies the same potential mRNA-binding groove of the Rae1–Nup98 complex, comparable to the previously reported structures of other viral proteins complexed with Rae1-Nup98, indicating that the Rae1–Nup98 complex is a common target for different viruses to impair the nuclear export pathway. Structural analysis and biochemical studies highlight the critical role of the highly conserved methionine (M58) of SARS-CoVs Orf6. Altogether our data unravel a mechanistic understanding of SARS-CoVs Orf6 targeting the mRNA-binding site of the Rae1–Nup98 complex to compete with the nuclear export of host mRNA, which further emphasizes that Orf6 is a critical virulence factor of SARS-CoVs.


Author(s):  
Yang Wang ◽  
Shuai Cui ◽  
Ting Xin ◽  
Xixi Wang ◽  
Hainan Yu ◽  
...  

African swine fever (ASF) is a devastating infectious disease caused by African swine fever virus (ASFV). The ASFV genome encodes multiple structural and non-structural proteins that contribute to evasion of host immunity. In this study, we determined that the viral non-structural protein MGF360-14L inhibits interferon-β (IFN-β) promoter activity induced by cGAS-STING signaling. MGF360-14L was also found to downregulate expression of the IRF3 protein and promote its degradation through ubiquitin-meditated proteolysis. Moreover, MGF360-14L was shown to interact with and destabilize IRF3 by facilitating E3 ligase TRIM21-mediated K63-linked ubiquitination of IRF3. Overall, our study revealed that MGF360-14L promotes degradation of IRF3 through TRIM21, thereby inhibiting type I interferon production. These findings provide new insights into the mechanisms underlying ASFV immune evasion.


2022 ◽  
Vol 10 (1) ◽  
pp. 133
Author(s):  
Daniel S. Layton ◽  
Kostlend Mara ◽  
Meiling Dai ◽  
Luis Fernando Malaver-Ortega ◽  
Tamara J. Gough ◽  
...  

Influenza A viruses (IAV) pose a constant threat to human and poultry health. Of particular interest are the infections caused by highly pathogenic avian influenza (HPAI) viruses, such as H5N1, which cause significant production issues. In response to influenza infection, cells activate immune mechanisms that lead to increased interferon (IFN) production. To investigate how alterations in the interferon signaling pathway affect the cellular response to infection in the chicken, we used CRISPR/Cas9 to generate a chicken cell line that lacks a functional the type I interferon receptor (IFNAR1). We then assessed viral infections with the WSN strain of influenza. Cells lacking a functional IFNAR1 receptor showed reduced expression of the interferon stimulated genes (ISG) such as Protein Kinase R (PKR) and Myxovirus resistance (Mx) and were more susceptible to viral infection with WSN. We further investigated the role or IFNAR1 on low pathogenicity avian influenza (LPAI) strains (H7N9) and a HPAI strain (H5N1). Intriguingly, Ifnar−/− cells appeared more resistant than WT cells when infected with HPAI virus, potentially indicating a different interaction between H5N1 and the IFN signaling pathway. Our findings support that ChIFNAR1 is a key component of the chicken IFN signaling pathway and these data add contributions to the field of host-avian pathogen interaction and innate immunity in chickens.


2021 ◽  
Author(s):  
Mengmeng Jin ◽  
Ranji Xu ◽  
Mahabub Maraj Alam ◽  
Ziyuan Ma ◽  
Sining Zhu ◽  
...  

Microglia are critical for brain development and play a central role in Alzheimers disease (AD) etiology. Down syndrome (DS), also known as trisomy 21, is the most common genetic origin of intellectual disability and the most common risk factor for AD. Surprisingly, little information is available on the impact of trisomy of human chromosome 21 (Hsa21) on microglia in DS brain development and AD in DS (DSAD). Using our new induced pluripotent stem cell (iPSC)-based human microglia-containing cerebral organoid and chimeric mouse brain models, here we report that DS microglia exhibit enhanced synaptic pruning function during brain development. Consequently, electrophysiological recordings demonstrate that DS microglial mouse chimeras show impaired synaptic neurotransmission, as compared to control microglial chimeras. Upon being exposed to human brain tissue-derived soluble pathological tau, DS microglia display dystrophic phenotypes in chimeric mouse brains, recapitulating microglial responses seen in human AD and DSAD brain tissues. Further flow cytometry, single-cell RNA-sequencing, and immunohistological analyses of chimeric mouse brains demonstrate that DS microglia undergo cellular senescence and exhibit elevated type I interferon signaling after being challenged by pathological tau. Mechanistically, we find that shRNA-mediated knockdown of Hsa21encoded type I interferon receptor genes, IFNARs, rescues the defective DS microglial phenotypes both during brain development and in response to pathological tau. Our findings provide first in vivo evidence supporting a paradigm shifting theory that human microglia respond to pathological tau by exhibiting accelerated senescence and dystrophic phenotypes. Our results further suggest that targeting IFNARs may improve microglial functions during DS brain development and prevent human microglial senescence in DS individuals with AD.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jianqing Xu ◽  
Zhihong Ren ◽  
Kangli Cao ◽  
Xianping Li ◽  
Jing Yang ◽  
...  

Boosting and prolonging SARS-CoV-2 vaccine-elicited immunity is paramount for containing the COVID-19 pandemic, which wanes substantially within months after vaccination. Here we demonstrate that the unique strain of probiotic Lactobacillus plantarum GUANKE (LPG) could promote SARS-CoV-2-specific immune responses in both effective and memory phases through enhancing interferon signaling and suppressing apoptotic and inflammatory pathways. Interestingly, oral LPG administration promoted SARS-CoV-2 neutralization antibodies even 6 months after immunization. Furthermore, when LPG was given immediately after SARS-CoV-2 vaccine inoculation, specific neutralization antibodies could be boosted >8-fold in bronchoalveolar lavage (BAL) and >2-fold in sera, T-cell responses were persistent and stable for a prolonged period both in BAL and the spleen. Transcriptional analyses showed that oral application of LPG mobilized immune responses in the mucosal and systemic compartments; in particular, gut-spleen and gut-lung immune axes were observed. These results suggest that LPG could be applied in combination with SARS-CoV-2 vaccines to boost and prolong both the effective and memory immune responses in mucosal and systemic compartments, thereby improving the efficacy of SARS-CoV-2 vaccination.


2021 ◽  
Vol 118 (52) ◽  
pp. e2116668118
Author(s):  
Paulina Pawlica ◽  
Therese A. Yario ◽  
Sylvia White ◽  
Jianhui Wang ◽  
Walter N. Moss ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease (COVID-19), continues to be a pressing health concern. In this study, we investigated the impact of SARS-CoV-2 infection on host microRNA (miRNA) populations in three human lung-derived cell lines, as well as in nasopharyngeal swabs from SARS-CoV-2–infected individuals. We did not detect any major and consistent differences in host miRNA levels after SARS-CoV-2 infection. However, we unexpectedly discovered a viral miRNA-like small RNA, named CoV2-miR-O7a (for SARS-CoV-2 miRNA-like ORF7a-derived small RNA). Its abundance ranges from low to moderate as compared to host miRNAs and it associates with Argonaute proteins—core components of the RNA interference pathway. We identify putative targets for CoV2-miR-O7a, including Basic Leucine Zipper ATF-Like Transcription Factor 2 (BATF2), which participates in interferon signaling. We demonstrate that CoV2-miR-O7a production relies on cellular machinery, yet is independent of Drosha protein, and is enhanced by the presence of a strong and evolutionarily conserved hairpin formed within the ORF7a sequence.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2448
Author(s):  
Elisa Fanunza ◽  
Nicole Grandi ◽  
Marina Quartu ◽  
Fabrizio Carletti ◽  
Laura Ermellino ◽  
...  

The evasion of the Interferon response has important implications in Zika virus (ZIKV) disease. Mutations in ZIKV viral protein NS4B, associated with modulation of the interferon (IFN) system, have been linked to increased pathogenicity in animal models. In this study, we unravel ZIKV NS4B as antagonist of the IFN signaling cascade. Firstly, we reported the genomic characterization of NS4B isolated from a strain of the 2016 outbreak, ZIKV Brazil/2016/INMI1, and we predicted its membrane topology. Secondly, we analyzed its phylogenetic correlation with other flaviviruses, finding a high similarity with dengue virus 2 (DEN2) strains; in particular, the highest conservation was found when NS4B was aligned with the IFN inhibitory domain of DEN2 NS4B. Hence, we asked whether ZIKV NS4B was also able to inhibit the IFN signaling cascade, as reported for DEN2 NS4B. Our results showed that ZIKV NS4B was able to strongly inhibit the IFN stimulated response element and the IFN-γ-activated site transcription, blocking IFN-I/-II responses. mRNA expression levels of the IFN stimulated genes ISG15 and OAS1 were also strongly reduced in presence of NS4B. We found that the viral protein was acting by suppressing the STAT1 phosphorylation and consequently blocking the nuclear transport of both STAT1 and STAT2.


2021 ◽  
Vol 53 ◽  
pp. S661-S662
Author(s):  
S. Kumar ◽  
K. Gecse ◽  
D. Baksa ◽  
X. Gonda ◽  
G. Bagdy ◽  
...  

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Kai Ren ◽  
Ya Zhu ◽  
Honggang Sun ◽  
Shilin Li ◽  
Xiaoqiong Duan ◽  
...  

Abstract Background Although interferon regulatory factor 2 (IRF2) was reported to stimulate virus replication by suppressing the type I interferon signaling pathway, because cell cycle arrest was found to promote viral replication, IRF2-regulated replication fork factor (FAM111A and RFC3) might be able to affect ZIKV replication. In this study, we aimed to investigate the function of IRF2, FAM111A and RFC3 to ZIKV replication and underlying mechanism. Methods siIRF2, siFAM111A, siRFC3 and pIRF2 in ZIKV-infected A549, 2FTGH and U5A cells were used to explore the mechanism of IRF2 to inhibit ZIKV replication. In addition, their expression was analyzed by RT-qPCR and western blots, respectively. Results In this study, we found IRF2 expression was increased in ZIKV-infected A549 cells and IRF2 inhibited ZIKV replication independent of type I IFN signaling pathway. IRF2 could activate FAM111A expression and then enhanced the host restriction effect of RFC3 to inhibit replication of ZIKV. Conclusions We speculated the type I interferon signaling pathway might not play a leading role in regulating ZIKV replication in IRF2-silenced cells. We found IRF2 was able to upregulate FAM111A expression and thus enhance the host restriction effect of RFC3 on ZIKV.


Sign in / Sign up

Export Citation Format

Share Document