Proteomic Profiling of Mammalian COPII Vesicles
AbstractIntracellular transport and homeostasis of the endomembrane system in eukaryotic cells depend on formation and fusion of vesicular carriers. COPII vesicles export newly synthesized secretory proteins from the endoplasmic reticulum (ER). They are formed by sequential recruitment of the small GTP binding protein Sar1, the inner coat complex Sec23/24, and the outer coat complex Sec13/31. In order to investigate the roles of mammalian Sec24 isoforms in cargo sorting, we have combined in vitro COPII vesicle reconstitutions with SILAC-based mass spectrometric analysis. This approach enabled us to identify the core proteome of mammalian COPII vesicles. Comparison of the proteomes generated from vesicles with different Sec24 isoforms confirms several established isoform-dependent cargo proteins, and identifies ERGIC1 and CNIH1 as novel Sec24C‐ and Sec24A-specific cargo proteins, respectively. Proteomic analysis of vesicles reconstituted with a Sec24C mutant, bearing a compromised binding site for the ER-to-Golgi QSNARE Syntaxin5, revealed that the SM/Munc18 protein SCFD1 binds to Syntaxin5 prior to its sorting into COPII vesicles. Furthermore, analysis of Sec24D mutants implicated in the development of a syndromic form of osteogenesis imperfecta showed sorting defects for the three ER-to-Golgi QSNAREs Syntaxin5, GS27, and Bet1.