vesicle tethering
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 21)

H-INDEX

36
(FIVE YEARS 3)

2021 ◽  
Vol 23 (1) ◽  
pp. 317
Author(s):  
Weiwei Zhang ◽  
Christopher J. Staiger

In plants, secretion of cell wall components and membrane proteins plays a fundamental role in growth and development as well as survival in diverse environments. Exocytosis, as the last step of the secretory trafficking pathway, is a highly ordered and precisely controlled process involving tethering, docking, and fusion of vesicles at the plasma membrane (PM) for cargo delivery. Although the exocytic process and machinery are well characterized in yeast and animal models, the molecular players and specific molecular events that underpin late stages of exocytosis in plant cells remain largely unknown. Here, by using the delivery of functional, fluorescent-tagged cellulose synthase (CESA) complexes (CSCs) to the PM as a model system for secretion, as well as single-particle tracking in living cells, we describe a quantitative approach for measuring the frequency of vesicle tethering events. Genetic and pharmacological inhibition of cytoskeletal function, reveal that the initial vesicle tethering step of exocytosis is dependent on actin and myosin XI. In contrast, treatments with the microtubule inhibitor, oryzalin, did not significantly affect vesicle tethering or fusion during CSC exocytosis but caused a minor increase in transient or aborted tethering events. With data from this new quantitative approach and improved spatiotemporal resolution of single particle events during secretion, we generate a revised model for the role of the cortical cytoskeleton in CSC trafficking.


2021 ◽  
Author(s):  
Weiwei Zhang ◽  
Christopher J. Staiger

AbstractIn plants, secretion of cell wall components and membrane proteins plays a fundamental role in growth and development as well as survival in diverse environments. Exocytosis, as the last step of the secretory trafficking pathway, is a highly ordered and precisely controlled process involving tethering, docking, and fusion of vesicles at the plasma membrane (PM) for cargo delivery. Although the exocytic process and machinery are well characterized in yeast and animal models, the molecular players and specific molecular events that underpin late stages of exocytosis in plant cells remain largely unknown. Here, by using the delivery of functional, fluorescent-tagged cellulose synthase (CESA) complexes (CSCs) to the PM as a model system for secretion, as well as single-particle tracking in living cells, we describe a quantitative approach for measuring the frequency of vesicle tethering events. Genetic and pharmacological inhibition of cytoskeletal function, reveal that the initial vesicle tethering step of exocytosis is dependent on actin and myosin XI. In contrast, treatments with the microtubule inhibitor, oryzalin, did not significantly affect vesicle tethering or fusion during CSC exocytosis but caused a minor increase of transient or aborted tethering events. With data from this new quantitative approach and improved spatiotemporal resolution of single particle events during secretion, we generate a revised model for the role of the cortical cytoskeleton in CSC trafficking.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3275
Author(s):  
Zinia D’Souza ◽  
Farhana Taher Sumya ◽  
Amrita Khakurel ◽  
Vladimir Lupashin

The Golgi is the central organelle of the secretory pathway and it houses the majority of the glycosylation machinery, which includes glycosylation enzymes and sugar transporters. Correct compartmentalization of the glycosylation machinery is achieved by retrograde vesicular trafficking as the secretory cargo moves forward by cisternal maturation. The vesicular trafficking machinery which includes vesicular coats, small GTPases, tethers and SNAREs, play a major role in coordinating the Golgi trafficking thereby achieving Golgi homeostasis. Glycosylation is a template-independent process, so its fidelity heavily relies on appropriate localization of the glycosylation machinery and Golgi homeostasis. Mutations in the glycosylation enzymes, sugar transporters, Golgi ion channels and several vesicle tethering factors cause congenital disorders of glycosylation (CDG) which encompass a group of multisystem disorders with varying severities. Here, we focus on the Golgi vesicle tethering and fusion machinery, namely, multisubunit tethering complexes and SNAREs and their role in Golgi trafficking and glycosylation. This review is a comprehensive summary of all the identified CDG causing mutations of the Golgi trafficking machinery in humans.


2021 ◽  
Author(s):  
Zachary A McDargh ◽  
Ben A O'Shaughnessy

Neurotransmitter release is accomplished by a multi-component machinery including the membrane-fusing SNARE proteins and Ca2+-sensing Synaptotagmin molecules. However, the Ca2+ sensitivity of release was found to increase or decrease with more or fewer SNARE complexes at the release site, respectively, while the cooperativity is unaffected (Acuna et al., 2014; Arancillo et al., 2013), suggesting that there is no simple division of labor between these two components. To examine the mechanisms underlying these findings, we developed molecular dynamics simulations of the neurotransmitter release machinery, with variable numbers of Synaptotagmin molecules and assembled SNARE complexes at the release site. Ca2+ uncaging simulations showed that increasing the number of SNARE complexes at fixed stoichiometric ratio of Synaptotagmin to SNAREs increased the Ca2+ sensitivity without affecting the cooperativity. The physiological cooperativity of ~4-5 was reproduced with 2-3 Synaptotagmin molecules per SNARE complex, suggesting that Synaptotagmin and SNAREs cooperate in fixed stoichiometry modules. In simulations of action potential-evoked release, increased numbers of Synaptotagmin-SNARE modules increased release probability, consistent with experiment. Our simulations suggest that the final membrane fusion step is driven by SNARE complex-mediated entropic forces, and by vesicle-tethering forces mediated by the long Synaptotagmin linker domains. In consequence, release rates are increased when more SNARE complexes and Synaptotagmin monomers are present at the fusion site.


2021 ◽  
Author(s):  
Jitka Ortmannova ◽  
Juraj Sekeres ◽  
Ivan Kulich ◽  
Jiri Santrucek ◽  
Petre Dobrev ◽  
...  

In the reaction to non-adapted Blumeria graminis f. sp. hordei (Bg), Arabidopsis thaliana leaf epidermal cells deposit cell wall reinforcements called papillae or seal fungal haustoria in encasements, both of which involve intensive exocytosis. A plant syntaxin SYP121/PEN1 has been found to be of key importance for the timely formation of papillae, and the vesicle tethering complex exocyst subunit EXO70B2 has been found to contribute to their morphology. Here, we identify a specific role for the EXO70B2-containing exocyst complex in the papillae membrane domains important for the callose deposition and GFP-SYP121 delivery to the focal attack sites, as well as its contribution to encasement formation. The mRuby2-EXO70B2 co-localises with the exocyst core subunit SEC6 and GFP-SYP121 in the membrane domain of papillae, and both proteins have the capacity to directly interact. The exo70B2/syp121 double mutant has a reduced number of papillae and haustorial encasements in response to Bg, indicating an additive role of the exocyst in SYP121 coordinated non-host resistance. In summary, we report cooperation between the plant exocyst and a SNARE protein in penetration resistance against non-adapted fungal pathogens.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Joshua Abrams ◽  
Jeremy Nance

Lumen extension in intracellular tubes can occur when vesicles fuse with an invading apical membrane. Within theCaenorhabditis elegansexcretory cell, which forms an intracellular tube, the exocyst vesicle-tethering complex is enriched at the lumenal membrane and is required for its outgrowth, suggesting that exocyst-targeted vesicles extend the lumen. Here, we identify a pathway that promotes intracellular tube extension by enriching the exocyst at the lumenal membrane. We show that PAR-6 and PKC-3/aPKC concentrate at the lumenal membrane and promote lumen extension. Using acute protein depletion, we find that PAR-6 is required for exocyst membrane recruitment, whereas PAR-3, which can recruit the exocyst in mammals, appears dispensable for exocyst localization and lumen extension. Finally, we show that CDC-42 and RhoGEF EXC-5/FGD regulate lumen extension by recruiting PAR-6 and PKC-3 to the lumenal membrane. Our findings reveal a pathway that connects CDC-42, PAR proteins, and the exocyst to extend intracellular tubes.


2021 ◽  
Vol 81 (1) ◽  
pp. 13-24.e7
Author(s):  
Xiandeng Wu ◽  
Marcelo Ganzella ◽  
Jinchuan Zhou ◽  
Shihan Zhu ◽  
Reinhard Jahn ◽  
...  

2020 ◽  
Author(s):  
Irene Pazos ◽  
Marta Puig-Tintó ◽  
Jorge Cordero ◽  
Nereida Jiménez-Menéndez ◽  
Marc Abella ◽  
...  

AbstractAtg9 is a transmembrane protein essential for selective autophagy, a pathway that mediates the targeted degradation of cellular components to sustain the cell fitness. To preserve the functionality of this pathway, the cell adjusts the transport of vesicles loaded with Atg9 through mechanisms that are not understood. Here we used live-cell imaging to investigate the interactome that regulates Multisubunit Tethering Complexes (MTCs), a set of conserved protein complexes that control vesicle tethering. We found that P4-ATPases, a family of lipid transporters involved in the biogenesis of vesicles, interact with MTCs that participate in the transport of Atg9, such as TRAPPIII. Using the lipid flippase Drs2, we demonstrated that the I(S/R)TTK motif nested in the N-terminal tail cavity of P4-ATPases is necessary for the interaction with MTCs and to maintain the homeostasis of Atg9. At low temperature, the cell enhances the assembly of the Drs2-TRAPPIII module and Drs2 is fundamental for the early stages of selective autophagy, a function that is independent from its activity as lipid flippase and its role in other vesicle transport pathways.


2020 ◽  
Vol 220 (1) ◽  
Author(s):  
Yijun Zhang ◽  
Joachim Seemann

GRASP55 and GRASP65 have been implicated in stacking of Golgi cisternae and lateral linking of stacks within the Golgi ribbon. However, RNAi or gene knockout approaches to dissect their respective roles have often resulted in conflicting conclusions. Here, we gene-edited GRASP55 and/or GRASP65 with a degron tag in human fibroblasts, allowing for induced rapid degradation by the proteasome. We show that acute depletion of either GRASP55 or GRASP65 does not affect the Golgi ribbon, while chronic degradation of GRASP55 disrupts lateral connectivity of the ribbon. Acute double depletion of both GRASPs coincides with the loss of the vesicle tethering proteins GM130, p115, and Golgin-45 from the Golgi and compromises ribbon linking. Furthermore, GRASP55 and/or GRASP65 is not required for maintaining stacks or de novo assembly of stacked cisternae at the end of mitosis. These results demonstrate that both GRASPs are dispensable for Golgi stacking but are involved in maintaining the integrity of the Golgi ribbon together with GM130 and Golgin-45.


2020 ◽  
Vol 1864 (11) ◽  
pp. 129694 ◽  
Author(s):  
Zinia D'Souza ◽  
Farhana S. Taher ◽  
Vladimir V. Lupashin

Sign in / Sign up

Export Citation Format

Share Document