scholarly journals Heparan sulfate molecules mediate synapse formation and function of male mating neural circuits in C. elegans

2018 ◽  
Author(s):  
María I. Lázaro-Peña ◽  
Carlos A. Díaz-Balzac ◽  
Hannes E. Bülow ◽  
Scott W. Emmons

AbstractThe nervous system regulates complex behaviors through a network of neurons interconnected by synapses. How specific synaptic connections are genetically determined is still unclear. Male mating is the most complex behavior in C. elegans. It is composed of sequential steps that are governed by more than 3,000 chemical connections. Here we show that heparan sulfates (HS) play a role in the formation and function of the male neural network. Cell-autonomous and non-autonomous 3-O sulfation by the HS modification enzyme HST-3.1/HS 3-O-sulfotransferase, localized to the HSPG glypicans LON-2/glypican and GPN-1/glypican, was specifically required for response to hermaphrodite contact during mating. Loss of 3-O sulfation resulted in the presynaptic accumulation of RAB-3, a molecule that localizes to synaptic vesicles, disrupting the formation of synapses in a component of the mating circuits. We also show that neural cell adhesion protein neurexin promotes and neural cell adhesion protein neuroligin inhibits formation of the same set of synapses in a parallel pathway. Thus, neural cell adhesion proteins and extracellular matrix components act together in the formation of synaptic connections.Author SummaryThe formation of the nervous system requires the function of several genetically-encoded proteins to form complex networks. Enzymatically-generated modifications of these proteins play a crucial role during this process. These authors analyzed the role of heparan sulfates in the process of synaptogenesis in the male tail of C. elegans. A modification of heparan sulfate is required for the formation of specific synapses between neurons by acting cell-autonomously and non-autonomously. Could it be that heparan sulfates and their diverse modifications are a component of the specification factor that neurons use to make such large numbers of connections unique?

1986 ◽  
Vol 103 (4) ◽  
pp. 1431-1439 ◽  
Author(s):  
B A Murray ◽  
G C Owens ◽  
E A Prediger ◽  
K L Crossin ◽  
B A Cunningham ◽  
...  

The neural cell adhesion molecule N-CAM is an intrinsic membrane glycoprotein that is expressed in the embryonic chicken nervous system as two different polypeptide chains encoded by alternatively spliced transcripts of a single gene. Because they differ by the presence or absence of approximately 250 amino acids in their cytoplasmic domains, these polypeptides are designated ld and sd, for large and small cytoplasmic domain, respectively. We report here that the ld-specific sequences comprise a single exon in the chicken N-CAM gene and that developmental expression of the ld and sd chains occurs in a tissue-specific fashion, with the ld chain restricted to the nervous system. Comparison of the nucleotide sequences from an N-CAM genomic clone with cDNA sequences showed that a single exon of 783 base pairs corresponded to the unique cytoplasmic domain of the ld polypeptide. Sequences from this exon were absent from the single N-CAM mRNA detected in several non-neural tissues by RNA blot hybridization, and immunoblot analysis confirmed that antigenic determinants unique to the ld-specific domain were not expressed in these tissues. Immunohistochemical experiments indicated that only the sd chain was expressed on cell surfaces of non-neural tissues throughout embryonic development. The ld chain was found on cell bodies and neurites of differentiated neurons; it first appeared as neurons began to extend neurites and to express the neuron-glia cell adhesion molecule (Ng-CAM) and it was restricted to definite layers in laminar tissues such as the retina and cerebellum. These results suggest that the control of mRNA splicing may affect the regulation of N-CAM function at specific sites within the nervous system and thus influence the control of neural morphogenesis and histogenesis.


1992 ◽  
Vol 22 (5) ◽  
pp. 1199-1205 ◽  
Author(s):  
Aiga Kowitz ◽  
Guni Kadmon ◽  
Marion Eckert ◽  
Volker Schirrmacher ◽  
Melitta Schachner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document