neural cell adhesion molecule
Recently Published Documents


TOTAL DOCUMENTS

1082
(FIVE YEARS 35)

H-INDEX

95
(FIVE YEARS 2)

Diagnostics ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2172
Author(s):  
Zahra Maleki ◽  
Akash Nadella ◽  
Mohnish Nadella ◽  
Gopi Patel ◽  
Shivni Patel ◽  
...  

Background: Insulinoma-associated protein 1 (INSM1) has been considered as a novel immunostain for neuroendocrine tumors (NETs) and is hypothesized to be more reliable than first-generation NET biomarkers, such as CGA (chromogranin A), SYP (synaptophysin) and CD56 (neural cell adhesion molecule). In this review, we summarize existing literature on INSM1′s reliability as an immunostain for detection of various NETs, its results in comparison to first-generation NET biomarkers, and its expression in both non-NETs and benign tissues/cells on cytology specimens (cell blocks/smears).


2021 ◽  
Vol 12 ◽  
Author(s):  
Bin-Feng Cheng ◽  
Xiao Feng ◽  
Yao-Xin Gao ◽  
Shao-Qin Jian ◽  
Shi-Rao Liu ◽  
...  

Neural cell adhesion molecule (NCAM) is involved in cell multi-directional differentiation, but its role in osteoblast differentiation is still poorly understood. In the present study, we investigated whether and how NCAM regulates osteoblastic differentiation. We found that NCAM silencing inhibited osteoblast differentiation in pre-osteoblastic MC3T3-E1 cells. The function of NCAM was further confirmed in NCAM-deficient mesenchymal stem cells (MSCs), which also had a phenotype with reduced osteoblastic potential. Moreover, NCAM silencing induced decrease of Wnt/β-catenin and Akt activation. The Wnt inhibitor blocked osteoblast differentiation, and the Wnt activator recovered osteoblast differentiation in NCAM-silenced MC3T3-E1 cells. We lastly demonstrated that osteoblast differentiation of MC3T3-E1 cells was inhibited by the PI3K-Akt inhibitor. In conclusion, these results demonstrate that NCAM silencing inhibited osteoblastic differentiation through inactivation of Wnt/β-catenin and PI3K-Akt signaling pathways.


2020 ◽  
Vol 21 (16) ◽  
pp. 5892 ◽  
Author(s):  
Airi Mori ◽  
Yi Yang ◽  
Yuka Takahashi ◽  
Masaya Hane ◽  
Ken Kitajima ◽  
...  

Polysialic acid (polySia/PSA) is an anionic glycan polymer of sialic acid, and it mostly modifies the neural cell adhesion molecule (NCAM) in mammalian brains. Quality and quantity of the polySia of the polySia–NCAM is spatio-temporally regulated in normal brain development and functions, and their impairments are reported to be related to diseases, such as psychiatric disorders and cancers. Therefore, precise understanding of the state of polySia–NCAM structure would lead to the diagnosis of diseases for which their suitable evaluation methods are necessary. In this study, to develop these evaluation methods, structures of polySia–NCAM from mouse brains at six different developmental stages were analyzed by several conventional and newly developed methods. Integrated results of these experiments clearly demonstrated the existence of different types of polySia–NCAMs in developing brains. In addition, combinational analyses were shown to be useful for precise understanding of the quantity and quality of polySia, which can provide criteria for the diagnosis of diseases.


2020 ◽  
Vol 382 (1) ◽  
pp. 71-82 ◽  
Author(s):  
Carlos F. Ibáñez ◽  
Gustavo Paratcha ◽  
Fernanda Ledda

Abstract The discovery in the late 1990s of the partnership between the RET receptor tyrosine kinase and the GFRα family of GPI-anchored co-receptors as mediators of the effects of GDNF family ligands galvanized the field of neurotrophic factors, firmly establishing a new molecular framework besides the ubiquitous neurotrophins. Soon after, however, it was realized that many neurons and brain areas expressed GFRα receptors without expressing RET. These observations led to the formulation of two new concepts in GDNF family signaling, namely, the non-cell-autonomous functions of GFRα molecules, so-called trans signaling, as well as cell-autonomous functions mediated by signaling receptors distinct from RET, which became known as RET-independent signaling. To date, the best studied RET-independent signaling pathway for GDNF family ligands involves the neural cell adhesion molecule NCAM and its association with GFRα co-receptors. Among the many functions attributed to this signaling system are neuronal migration, neurite outgrowth, dendrite branching, spine formation, and synaptogenesis. This review summarizes our current understanding of this and other mechanisms of RET-independent signaling by GDNF family ligands and GFRα receptors, as well as their physiological importance.


Sign in / Sign up

Export Citation Format

Share Document