scholarly journals Pannexin-1 mediated ATP release in adipocytes is sensitive to glucose and insulin and modulates lipolysis and macrophage migration

2018 ◽  
Author(s):  
Marco Tozzi ◽  
Jacob B. Hansen ◽  
Ivana Novak

One-sentence summaryInsulin inhibits ATP release in adipocytesAbstractExtracellular ATP signaling is involved in many physiological and pathophysiological processes, and purinergic receptors are targets for drug therapy in several diseases, including obesity and diabetes. Adipose tissue has crucial functions in lipid and glucose metabolism and adipocytes express purinergic receptors. However, the sources of extracellular ATP in adipose tissue are not yet characterized.Here, we show that upon adrenergic stimulation white adipocytes release ATP through the pannexin-1 pore that is regulated by a cAMP-PKA dependent pathway. The ATP release correlates with increased cell metabolism, and extracellular ATP induces Ca2+ signaling and lipolysis in adipocytes and promotes macrophages migration. Most importantly, ATP release is markedly inhibited by insulin, and thereby auto/paracrine purinergic signaling in adipose tissue would be attenuated. Furthermore, we define the signaling pathway for insulin regulated ATP release.Our findings reveal the insulin-pannexin-1-purinergic signaling cross-talk in adipose tissue and we propose that deregulation of this signaling may underlie adipose tissue inflammation and type-2 diabetes.

2017 ◽  
Vol 474 (13) ◽  
pp. 2133-2144 ◽  
Author(s):  
Andrew K.J. Boyce ◽  
Leigh Anne Swayne

In the nervous system, extracellular ATP levels transiently increase in physiological and pathophysiological circumstances, effecting key signalling pathways in plasticity and inflammation through purinergic receptors. Pannexin 1 (Panx1) forms ion- and metabolite-permeable channels that mediate ATP release and are particularly enriched in the nervous system. Our recent study demonstrated that elevation of extracellular ATP triggers Panx1 internalization in a concentration- and time-dependent manner. Notably, this effect was sensitive to inhibition of ionotropic P2X7 purinergic receptors (P2X7Rs). Here, we report our novel findings from the detailed investigation of the mechanism underlying P2X7R–Panx1 cross-talk in ATP-stimulated internalization. We demonstrate that extracellular ATP triggers and is required for the clustering of P2X7Rs and Panx1 on Neuro2a cells through an extracellular physical interaction with the Panx1 first extracellular loop (EL1). Importantly, disruption of P2X7R–Panx1 clustering by mutation of tryptophan 74 within the Panx1 EL1 inhibits Panx1 internalization. Notably, P2X7R–Panx1 clustering and internalization are independent of P2X7R-associated intracellular signalling pathways (Ca2+ influx and Src activation). Further analysis revealed that cholesterol is required for ATP-stimulated P2X7R–Panx1 clustering at the cell periphery. Taken together, our data suggest that extracellular ATP induces and is required for Panx1 EL1-mediated, cholesterol-dependent P2X7R–Panx1 clustering and endocytosis. These findings have important implications for understanding the role of Panx1 in the nervous system and provide important new insights into Panx1–P2X7R cross-talk.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anastasia Georgiadi ◽  
Valeria Lopez-Salazar ◽  
Rabih El- Merahbi ◽  
Rhoda Anane Karikari ◽  
Xiaochuan Ma ◽  
...  

AbstractThe proper functional interaction between different tissues represents a key component in systemic metabolic control. Indeed, disruption of endocrine inter-tissue communication is a hallmark of severe metabolic dysfunction in obesity and diabetes. Here, we show that the FNDC4-GPR116, liver-white adipose tissue endocrine axis controls glucose homeostasis. We found that the liver primarily controlled the circulating levels of soluble FNDC4 (sFNDC4) and lowering of the hepatokine FNDC4 led to prediabetes in mice. Further, we identified the orphan adhesion GPCR GPR116 as a receptor of sFNDC4 in the white adipose tissue. Upon direct and high affinity binding of sFNDC4 to GPR116, sFNDC4 promoted insulin signaling and insulin-mediated glucose uptake in white adipocytes. Indeed, supplementation with FcsFNDC4 in prediabetic mice improved glucose tolerance and inflammatory markers in a white-adipocyte selective and GPR116-dependent manner. Of note, the sFNDC4-GPR116, liver-adipose tissue axis was dampened in (pre) diabetic human patients. Thus our findings will now allow for harnessing this endocrine circuit for alternative therapeutic strategies in obesity-related pre-diabetes.


2021 ◽  
Vol 153 (5) ◽  
Author(s):  
Carsten Mim ◽  
Guy Perkins ◽  
Gerhard Dahl

Pannexin 1 (Panx1) plays a decisive role in multiple physiological and pathological settings, including oxygen delivery to tissues, mucociliary clearance in airways, sepsis, neuropathic pain, and epilepsy. It is widely accepted that Panx1 exerts its role in the context of purinergic signaling by providing a transmembrane pathway for ATP. However, under certain conditions, Panx1 can also act as a highly selective membrane channel for chloride ions without ATP permeability. A recent flurry of publications has provided structural information about the Panx1 channel. However, while these structures are consistent with a chloride selective channel, none show a conformation with strong support for the ATP release function of Panx1. In this Viewpoint, we critically assess the existing evidence for the function and structure of the Panx1 channel and conclude that the structure corresponding to the ATP permeation pathway is yet to be determined. We also list a set of additional topics needing attention and propose ways to attain the large-pore, ATP-permeable conformation of the Panx1 channel.


2020 ◽  
Vol 318 (5) ◽  
pp. C832-C835 ◽  
Author(s):  
Francesco Di Virgilio ◽  
Alba Clara Sarti ◽  
Robson Coutinho-Silva

Danger sensing is one of the most fundamental evolutionary features enabling multicellular organisms to perceive potential threats, escape from risky situations, fight actual intruders, and repair damage. Several endogenous molecules are used to “signal damage,” currently referred to as “alarmins” or “damage-associated molecular patterns” (DAMPs), most being already present within all cells (preformed DAMPs), and thus ready to be released, and others neosynthesized following injury. Over recent years it has become overwhelmingly clear that adenosine 5′-triphosphate (ATP) is a ubiquitous and extremely efficient DAMP (thus promoting inflammation), and its main metabolite, adenosine, is a strong immunosuppressant (thus dampening inflammation). Extracellular ATP ligates and activates the P2 purinergic receptors (P2Rs) and is then degraded by soluble and plasma membrane ecto-nucleotidases to generate adenosine acting at P1 purinergic receptors (P1Rs). Extracellular ATP, P2Rs, ecto-nucleotidases, adenosine, and P1Rs are basic elements of the purinergic signaling network and fundamental pillars of inflammation.


1999 ◽  
Vol 276 (6) ◽  
pp. G1391-G1400 ◽  
Author(s):  
Richard M. Roman ◽  
Andrew P. Feranchak ◽  
Kelli D. Salter ◽  
Yu Wang ◽  
J. Gregory Fitz

P2Y receptor stimulation increases membrane Cl− permeability in biliary epithelial cells, but the source of extracellular nucleotides and physiological relevance of purinergic signaling to biliary secretion are unknown. Our objectives were to determine whether biliary cells release ATP under physiological conditions and whether extracellular ATP contributes to cell volume regulation and transepithelial secretion. With the use of a sensitive bioluminescence assay, constitutive ATP release was detected from human Mz-ChA-1 cholangiocarcinoma cells and polarized normal rat cholangiocyte monolayers. ATP release increased rapidly during cell swelling induced by hypotonic exposure. In Mz-ChA-1 cells, removal of extracellular ATP (apyrase) and P2 receptor blockade (suramin) reversibly inhibited whole cell Cl− current activation and prevented cell volume recovery during hypotonic stress. Moreover, exposure to apyrase induced cell swelling under isotonic conditions. In intact normal rat cholangiocyte monolayers, hypotonic perfusion activated apical Cl−currents, which were inhibited by addition of apyrase and suramin to bathing media. These findings indicate that modulation of ATP release by the cellular hydration state represents a potential signal coordinating cell volume with membrane Cl− permeability and transepithelial Cl−secretion.


2004 ◽  
Vol 286 (4) ◽  
pp. G538-G546 ◽  
Author(s):  
David Gatof ◽  
Gordan Kilic ◽  
J. Gregory Fitz

Extracellular ATP is a potent autocrine/paracrine signal that regulates a broad range of liver functions through activation of purinergic receptors. In biliary epithelium, increases in cell volume stimulate ATP release through a phosphoinositide 3-kinase (PI3-kinase)-dependent mechanism. Because PI3-kinase also regulates vesicular exocytosis, the purpose of these studies was to determine whether volume-stimulated vesicular exocytosis contributes to cellular ATP release. In a human cholangiocarcinoma cell line, exocytosis was measured by using the plasma membrane marker FM1–43, whereas ATP release was assessed by using a luciferase-luciferin assay. Under basal conditions, cholangiocytes exhibited constitutive exocytosis at a rate of 1.6%/min, and low levels of extracellular ATP were detected at 48.2 arbitrary light units. Increases in cholangiocyte cell volume induced by hypotonic exposure resulted in a 10-fold increase in the rate of exocytosis and a robust 35-fold increase in ATP release. Both vesicular exocytosis and ATP release were proportional to cell volume, and both exhibited similar regulatory properties including: 1) dependence on intact PI3-kinase, 2) attenuation by inhibition of PKC, and 3) potentiation by activation of PKC before hypotonic exposure. These findings demonstrate that increases in cholangiocyte cell volume stimulate ATP release and vesicular exocytosis through similar regulatory paradigms. Functional interactions among cell volume, PKC, and PI3-kinase modulate exocytosis, thereby regulating ATP release and purinergic signaling in cholangiocytes. It is hypothesized that PKC is involved in the recruitment of a volume-sensitive vesicular pool to a readily releasable state.


2020 ◽  
Vol 21 (7) ◽  
pp. 2503 ◽  
Author(s):  
Rosario Gajardo-Gómez ◽  
Cristian A. Santibañez ◽  
Valeria C. Labra ◽  
Gonzalo I. Gómez ◽  
Eliseo A. Eugenin ◽  
...  

At least half of human immunodeficiency virus (HIV)-infected individuals suffer from a wide range of cognitive, behavioral and motor deficits, collectively known as HIV-associated neurocognitive disorders (HAND). The molecular mechanisms that amplify damage within the brain of HIV-infected individuals are unknown. Recently, we described that HIV augments the opening of connexin-43 (Cx43) hemichannels in cultured human astrocytes, which result in the collapse of neuronal processes. Whether HIV soluble viral proteins such as gp120, can regulate hemichannel opening in astrocytes is still ignored. These channels communicate the cytosol with the extracellular space during pathological conditions. We found that gp120 enhances the function of both Cx43 hemichannels and pannexin-1 channels in mouse cortical astrocytes. These effects depended on the activation of IL-1β/TNF-α, p38 MAP kinase, iNOS, cytoplasmic Ca2+ and purinergic signaling. The gp120-induced channel opening resulted in alterations in Ca2+ dynamics, nitric oxide production and ATP release. Although the channel opening evoked by gp120 in astrocytes was reproduced in ex vivo brain preparations, these responses were heterogeneous depending on the CA1 region analyzed. We speculate that soluble gp120-induced activation of astroglial Cx43 hemichannels and pannexin-1 channels could be crucial for the pathogenesis of HAND.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Yanghui Xing ◽  
Liang Song ◽  
Yingying Zhang ◽  
Tengyu Zhang ◽  
Jian Li ◽  
...  

Both parathyroid hormone (PTH) and mechanical signals are able to regulate bone growth and regeneration. They also can work synergistically to regulate osteoblast proliferation, but little is known about the mechanisms how PTH and mechanical signals interact with each other during this process. In this study, we investigated responses of MC3T3-E1 osteoblasts to PTH and oscillatory fluid flow. We found that osteoblasts are more sensitive to mechanical signals in the presence of PTH according to ERK1/2 phosphorylation, ATP release, CREB phosphorylation, and cell proliferation. PTH may also reduce the osteoblast refractory period after desensitization due to mechanical signals. We further found that the synergistic responses of osteoblasts to fluid flow or ATP with PTH had similar patterns, suggesting that synergy between fluid flow and PTH may be through the ATP pathway. After we inhibited ATP effects using apyrase in osteoblasts, their synergistic responses to mechanical stimulation and PTH were also inhibited. Additionally, knocking down P2Y2 purinergic receptors can significantly attenuate osteoblast synergistic responses to mechanical stimulation and PTH in terms of ERK1/2 phosphorylation, CREB phosphorylation, and cell proliferation. Thus, our results suggest that PTH enhances mechanosensitivity of osteoblasts via a mechanism involving ATP and P2Y2 purinergic receptors.


2011 ◽  
Vol 208 (9) ◽  
pp. 1823-1834 ◽  
Author(s):  
Claire Séror ◽  
Marie-Thérèse Melki ◽  
Frédéric Subra ◽  
Syed Qasim Raza ◽  
Marlène Bras ◽  
...  

Extracellular adenosine triphosphate (ATP) can activate purinergic receptors of the plasma membrane and modulate multiple cellular functions. We report that ATP is released from HIV-1 target cells through pannexin-1 channels upon interaction between the HIV-1 envelope protein and specific target cell receptors. Extracellular ATP then acts on purinergic receptors, including P2Y2, to activate proline-rich tyrosine kinase 2 (Pyk2) kinase and transient plasma membrane depolarization, which in turn stimulate fusion between Env-expressing membranes and membranes containing CD4 plus appropriate chemokine co-receptors. Inhibition of any of the constituents of this cascade (pannexin-1, ATP, P2Y2, and Pyk2) impairs the replication of HIV-1 mutant viruses that are resistant to conventional antiretroviral agents. Altogether, our results reveal a novel signaling pathway involved in the early steps of HIV-1 infection that may be targeted with new therapeutic approaches.


Author(s):  
Manuel F. Muñoz ◽  
Theanne N. Griffith ◽  
Jorge E. Contreras

AbstractPain is a physiological response to bodily damage and serves as a warning of potential threat. Pain can also transform from an acute response to noxious stimuli to a chronic condition with notable emotional and psychological components that requires treatment. Indeed, the management of chronic pain is currently an important unmet societal need. Several reports have implicated the release of the neurotransmitter adenosine triphosphate (ATP) and subsequent activation of purinergic receptors in distinct pain etiologies. Purinergic receptors are broadly expressed in peripheral neurons and the spinal cord; thus, purinergic signaling in sensory neurons or in spinal circuits may be critical for pain processing. Nevertheless, an outstanding question remains: what are the mechanisms of ATP release that initiate nociceptive signaling? Connexin and pannexin channels are established conduits of ATP release and have been suggested to play important roles in a variety of pathologies, including several models of pain. As such, these large-pore channels represent a new and exciting putative pharmacological target for pain treatment. Herein, we will review the current evidence for a role of connexin and pannexin channels in ATP release during nociceptive signaling, such as neuropathic and inflammatory pain. Collectively, these studies provide compelling evidence for an important role of connexins and pannexins in pain processing.


Sign in / Sign up

Export Citation Format

Share Document