scholarly journals A stress-induced Tyrosine tRNA depletion response mediates codon-based translational repression and growth suppression

2018 ◽  
Author(s):  
Doowon Huh ◽  
Maria C. Passarelli ◽  
Jenny Gao ◽  
Shahnoza N Dusmatova ◽  
Clara Goin ◽  
...  

SUMMARYEukaryotic transfer RNAs can become selectively fragmented upon various stresses, generating tRNA-derived small RNA fragments. Such fragmentation has been reported to impact a small fraction of the tRNA pool and thus presumed to not directly impact translation. We report that oxidative stress can rapidly generate tyrosine tRNAGUA fragments in human cells—causing significant depletion of the precursor tRNA. Tyrosine tRNAGUA depletion impaired translation of growth and metabolic genes enriched in cognate tyrosine codons. Depletion of tyrosine tRNAGUA or its translationally regulated targets USP3 and SCD repressed proliferation—revealing a dedicated tRNA-regulated growth suppressive pathway for oxidative stress response. Tyrosine fragments are generated in a DIS3L2 exoribonuclease-dependent manner and inhibit hnRNPA1-mediated transcript destabilization. Moreover, tyrosine fragmentation is conserved in C. elegans. Thus, tRNA fragmentation can coordinately generate trans-acting small-RNAs and functionally deplete a tRNA. Our findings reveal the existence of an underlying adaptive codon-based regulatory response inherent to the genetic code.

Parasitology ◽  
2019 ◽  
Vol 147 (8) ◽  
pp. 855-864
Author(s):  
Collette Britton ◽  
Roz Laing ◽  
Eileen Devaney

AbstractSmall RNAs are important regulators of gene expression. They were first identified in Caenorhabditis elegans, but it is now apparent that the main small RNA silencing pathways are functionally conserved across diverse organisms. Availability of genome data for an increasing number of parasitic nematodes has enabled bioinformatic identification of small RNA sequences. Expression of these in different lifecycle stages is revealed by small RNA sequencing and microarray analysis. In this review we describe what is known of the three main small RNA classes in parasitic nematodes – microRNAs (miRNAs), Piwi-interacting RNAs (piRNAs) and small interfering RNAs (siRNAs) – and their proposed functions. miRNAs regulate development in C. elegans and the temporal expression of parasitic nematode miRNAs suggest modulation of target gene levels as parasites develop within the host. miRNAs are also present in extracellular vesicles released by nematodes in vitro, and in plasma from infected hosts, suggesting potential regulation of host gene expression. Roles of piRNAs and siRNAs in suppressing target genes, including transposable elements, are also reviewed. Recent successes in RNAi-mediated gene silencing, and application of small RNA inhibitors and mimics will continue to advance understanding of small RNA functions within the parasite and at the host–parasite interface.


2016 ◽  
Author(s):  
Yun S. Choi ◽  
Lanelle O. Edwards ◽  
Aubrey DiBello ◽  
Antony M. Jose

ABSTRACTChanges in small non-coding RNAs such as micro RNAs (miRNAs) can serve as indicators of disease and can be measured using next-generation sequencing of RNA (RNA-seq). Here, we highlight the need for approaches that complement RNA-seq, discover that northern blotting of small RNAs is biased against short sequences, and develop a protocol that removes this bias. We found that multiple small RNA-seq datasets from the worm C. elegans had shorter forms of miRNAs that appear to be degradation products that arose during the preparatory steps required for RNA-seq. When using northern blotting during these studies, we discovered that miRNA-length probes can have a ~360-fold bias against detecting even synthetic sequences that are 8 nt shorter. By using shorter probes and by performing hybridization and washes at low temperatures, we greatly reduced this bias to enable equivalent detection of 24 nt to 14 nt RNAs. Our protocol can better discriminate RNAs that differ by a single nucleotide and can detect specific miRNAs present in total RNA from C. elegans. This improved northern blotting is particularly useful to obtain a measure of small RNA integrity, analyze products of RNA processing or turnover, and analyze functional RNAs that are shorter than typical miRNAs.


2020 ◽  
Author(s):  
Rebecca S. Moore ◽  
Rachel Kaletsky ◽  
Chen Lesnik ◽  
Vanessa Cota ◽  
Edith Blackman ◽  
...  

AbstractAnimals face both external and internal dangers: pathogens threaten from the environment, and unstable genomic elements threaten from within. Previously, we discovered that C. elegans protects itself from pathogens by “reading” bacterial small RNAs and using this information to both induce avoidance and transmit memories for several generations. Here we found that these memories can be transferred to naïve animals via Cer1 retrotransposon-encoded capsids. Cer1 functions at the step of transmission of information from the germline to neurons, and is required for C. elegans’ learned avoidance ability and for mothers to pass this information on to progeny. The presence of the Cer1 retrotransposon in wild C. elegans strains correlates with the ability to learn and inherit small RNA-induced pathogen avoidance. Together, these results suggest that C. elegans has co-opted a potentially dangerous retrotransposon to instead protect itself and its progeny from a common pathogen through its inter-tissue signaling ability, hijacking this genomic element for its own adaptive immunity benefit.


2021 ◽  
Author(s):  
Marcela E Legüe ◽  
Blanca Aguila ◽  
Bernardo Pollak ◽  
Andrea Calixto

The inheritance of memories is adaptive for survival. Microbes interact with all organisms challenging their immunity and triggering behavioral adaptations. Some of these behaviors induced by bacteria can be inherited although the mechanisms of action are largely unexplored. In this work, we use C. elegans and its bacteria to study the transgenerational RNA dynamics of an interspecies crosstalk leading to a heritable behavior. Heritable responses to bacterial pathogens in the nematode include avoidance and pathogen-induced diapause (PIDF), a state of suspended animation to evade the pathogen threat. We identify a small RNA RsmY, involved in quorum sensing from P. aeruginosa as required for initiation of PIDF. Histone methyltransferase SET-18/SMYD3 is also needed for PIDF initiation in C. elegans. In contrast, SET-25/EHMT2 is necessary for the maintenance of the memory of pathogen exposure in the transgenerational lineage. This work can be a starting point to understanding microbiome-induced inheritance of acquired traits.


Exposome ◽  
2021 ◽  
Author(s):  
Karthik Suresh Arulalan ◽  
Javier Huayta ◽  
Jonathan W Stallrich ◽  
Adriana San-Miguel

Abstract Chemical agents released into the environment can induce oxidative stress in organisms, which is detrimental for health. Although environmental exposures typically include multiple chemicals, organismal studies on oxidative stress derived from chemical agents commonly study exposures to individual compounds. In this work, we explore how chemical mixtures drive the oxidative stress response under various conditions in the nematode C. elegans, by quantitatively assessing levels of gst-4 expression. Our results indicate that naphthoquinone mixtures drive responses differently than individual components, and that altering environmental conditions, such as increased heat and reduced food availability, result in dramatically different oxidative stress responses mounted by C. elegans. When exposed to heat, the oxidative stress response is diminished. Notably, when exposed to limited food, the oxidative stress response specific to juglone is significantly heightened, while identified antagonistic interactions between some naphthoquinone components in mixtures are abolished. This implies that organismal responses to xenobiotics is confounded by environment and stressor interactions. Given the high number of variables under study, and their potential combinations, a simplex centroid design was used to capture such non-trivial response over the design space. This makes the case for the adoption of Design of Experiments approaches as they can greatly expand the experimental space probed in noisy biological readouts, and in combinatorial experiments. Our results also reveal gaps in our current knowledge of the organismal oxidative stress response, which can be addressed by employing sophisticated design of experiments approaches to identify significant interactions.


2019 ◽  
Author(s):  
Itamar Lev ◽  
Itai Antoine Toker ◽  
Yael Mor ◽  
Anat Nitzan ◽  
Guy Weintraub ◽  
...  

AbstractInC. elegansnematodes, components of liquid-like germ granules were shown to be required for transgenerational small RNA inheritance. Surprisingly, we show here that mutants with defective germ granules (pptr-1,meg-3/4,pgl-1) can nevertheless inherit potent small RNA-based silencing responses, but some of the mutants lose this ability after many generations of homozygosity. Animals mutated inpptr-1, which is required for stabilization of P granules in the early embryo, display extremely strong heritable RNAi responses, which last for tens of generations, long after the responses in wild type animals peter out. The phenotype of mutants defective in the core germ granules proteins MEG-3 and MEG-4, depends on the genotype of the ancestors: Mutants that derive from maternal lineages that had functional MEG-3 and MEG-4 proteins exhibit enhanced RNAi inheritance for multiple generations. While functional ancestralmeg-3/4alleles correct, and even potentiates the ability of mutant descendants to inherit RNAi, defects in germ granules functions can be memorized as well; Wild type descendants that derive from lineages of mutants show impaired RNAi inheritance for many (>16) generations, although their germ granules are intact. Importantly, while P granules are maternally deposited, wild type progeny derived frommeg-3/4male mutants also show reduced RNAi inheritance. Unlike germ granules, small RNAs are inherited also from the sperm. Moreover, we find that the transgenerational effects that depend on the ancestral germ granules require the argonaute protein HRDE-1, which carries heritable small RNAs in the germline. Indeed, small RNA sequencing reveals imbalanced levels of many endogenous small RNAs in germ granules mutants. Strikingly, we find thathrde-1;meg-3/4triple mutants inherit RNAi, althoughhrde-1was previously thought to be essential for heritable silencing. We propose that germ granules sort and shape the RNA pool, and that small RNA inheritance memorizes this activity for multiple generations.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 684-684
Author(s):  
Raul Castro-Portuguez ◽  
Jeremy Meyers ◽  
Sam Freitas ◽  
Hope Dang ◽  
Emily Turner ◽  
...  

Abstract Aging is characterized by a progressive decline in the normal physiological functions of an organism, ultimately leading to mortality. Metabolic changes throughout the aging process disrupt the balance and homeostasis of the cell. The kynurenine metabolic pathway is the sole de novo biosynthetic pathway for producing NAD+ from ingested tryptophan. Altered kynurenine pathway activity is associated with both aging and a variety of age-associated diseases, and kynurenine-based interventions can extend lifespan in Caenorhabditis elegans. Our laboratory recently demonstrated knockdown of the kynurenine pathway enzymes kynureninase (KYNU) or 3-hydroxyanthranilic acid dioxygenase (HAAO) increases lifespan by 20-30% in C elegans. However, the mechanism of how these interventions may modulate response against different stressors during the aging process has yet to be explored. Fluorescent reporter strains show the stress-responsive transcription factors skn-1 (ortholog of NRF2/NFE2L2; oxidative stress response) and hif-1 (ortholog of HIF1A; hypoxic stress response) to be highly upregulated when the kynurenine pathway is inhibited. We also demonstrated the increase expression of gst-4 and gcs-1 (transcriptional targets skn-1), which are involved in production of the antioxidant glutathione (GSH), as well as upregulation of cysl-2 (transcriptional target of hif-1), a regulator of cysteine biosynthesis from serine. We hypothesize that lifespan extension resulting from kynurenine pathway inhibition is mediated, at least in part, by upregulation of these transcription factors, providing elevated defense against oxidative stress and hypoxic stress.


2019 ◽  
Vol 65 (12) ◽  
pp. 1581-1591 ◽  
Author(s):  
Morgane Meistertzheim ◽  
Tobias Fehlmann ◽  
Franziska Drews ◽  
Marcello Pirritano ◽  
Gilles Gasparoni ◽  
...  

Abstract BACKGROUND Small RNAs are key players in the regulation of gene expression and differentiation. However, many different classes of small RNAs (sRNAs) have been described with distinct biogenesis pathways and, as a result, with different biochemical properties. To analyze sRNAs by deep sequencing, complementary DNA synthesis requires manipulation of the RNA molecule itself. Thus, enzymatic activities during library preparation bias the library content owing to biochemical criteria. METHODS We compared 4 different manipulations of RNA for library preparation: (a) a ligation-based procedure allowing only 5′-mono-phosphorylated RNA to enter the library, (b) a ligation-based procedure allowing additional 5′-triphosphates and Cap structures, (c) a ligation-independent, template-switch-based library preparation, and (d) a template-switch-based library preparation allowing 3′-phosphorylated RNAs to enter the library. RESULTS Our data show large differences between ligation-dependent and ligation-independent libraries in terms of their preference for individual sRNA classes such as microRNAs (miRNAs), Piwi-interacting RNAs (piRNAs), and transfer RNA fragments. Moreover, the miRNA composition is different between both procedures, and more microRNA isoforms (isomiRs) can be identified after pyrophosphatase treatment. piRNAs are enriched in template-switch libraries, and this procedure apparently includes more different RNA species. CONCLUSIONS Our data indicate that miRNAomics from both methods will hardly be comparable. Ligation-based libraries enrich for canonical miRNAs, which thus may be suitable methods for miRNAomics. Template-switch libraries contain increased numbers and different compositions of fragments and long RNAs. Following different interests for other small RNA species, ligation-independent libraries appear to show a more realistic sRNA landscape with lower bias against biochemical modifications.


Sign in / Sign up

Export Citation Format

Share Document