scholarly journals Experimentally induced pain does not influence updating of peripersonal space and body representations following tool-use

2018 ◽  
Author(s):  
Axel Davies Vittersø ◽  
Monika Halicka ◽  
Gavin Buckingham ◽  
Michael J Proulx ◽  
Mark Wilson ◽  
...  

Representations of the body and peripersonal space can be distorted for people with some chronic pain conditions. Experimental pain induction can give rise to similar, but transient distortions in healthy individuals. However, spatial and bodily representations are dynamic, and constantly update as we interact with objects in our environment. It is unclear whether induced pain disrupts the mechanisms involved in updating these representations. In the present study, we sought to investigate the effect of induced pain on the updating of peripersonal space and body representations during and following tool-use. We compared performance under three conditions (pain, active placebo, neutral) on a visuotactile crossmodal congruency task and a tactile distance judgement task to measure updating of peripersonal space and body representations, respectively. We induced pain by applying 1% capsaicin cream to the arm, and for placebo we used a gel that induced non-painful warming. Consistent with previous findings, the difference in crossmodal interference from visual distractors in the same compared to opposite visual field to the tactile target was less when tools were crossed than uncrossed. This suggests an extension of peripersonal space to incorporate the tips of the tools. Also consistent with previous findings, estimates of the felt distance between two points (tactile distance judgements) decreased after active tool-use. In contrast to our predictions, however, we found no evidence that pain interfered with performance on either task when compared to the control conditions. This suggests that the updating of peripersonal space and body representations is not disrupted by induced pain. Therefore, acute pain does not account for the distorted representations of the body and peripersonal space that can endure in people with chronic pain conditions.

2018 ◽  
Vol 18 (3) ◽  
pp. 479-489 ◽  
Author(s):  
Kristian Kjær Petersen ◽  
Hjalte Holm Andersen ◽  
Masato Tsukamoto ◽  
Lincoln Tracy ◽  
Julian Koenig ◽  
...  

AbstractBackground and aimsThe autonomic nervous system (ANS) is capable of modulating pain. Aberrations in heart rate variability (HRV), reflective of ANS activity, are associated with experimental pain sensitivity, chronic pain, and more recently, pain modulatory mechanisms but the underlying mechanisms are still unclear. HRV is lowered during experimental pain as well as in chronic pain conditions and HRV can be increased by propranolol, which is a non-selective β-blocker. Sensitization of central pain pathways have been observed in several chronic pain conditions and human mechanistic pain biomarkers for these central pain pathways include temporal summation of pain (TSP) and conditioned pain modulation (CPM). The current study aimed to investigate the effect of the β-blocker propranolol, and subsequently assessing the response to standardized, quantitative, mechanistic pain biomarkers.MethodsIn this placebo-controlled, double-blinded, randomized crossover study, 25 healthy male volunteers (mean age 25.6 years) were randomized to receive 40 mg propranolol and 40 mg placebo. Heart rate, blood pressure, and HRV were assessed before and during experimental pain tests. Cuff pressure pain stimulation was used for assessment of pain detection (cPDTs) and pain tolerance (cPTTs) thresholds, TSP, and CPM. Offset analgesia (OA) was assessed using heat stimulation.ResultsPropranolol significantly reduced heart rate (p<0.001), blood pressure (p<0.02) and increased HRV (p<0.01) compared with placebo. No significant differences were found comparing cPDT (p>0.70), cPTT (p>0.93), TSP (p>0.70), OA-effect (p>0.87) or CPM (p>0.65) between propranolol and placebo.ConclusionsThe current study demonstrated that propranolol increased HRV, but did not affect pressure pain sensitivity or any pain facilitatory or modulatory outcomes.ImplicationsAnalgesic effects of propranolol have been reported in clinical pain populations and the results from the current study could indicate that increased HRV from propranolol is not associated with peripheral and central pain pathways in healthy male subjects.


2020 ◽  
Author(s):  
Vishwas Tripathi ◽  
Amaresh Mishra ◽  
Yamini Pathak ◽  
Aklank Jain ◽  
Hridayesh Prakash

Fibromyalgia (FM) or Fibromyalgia Syndrome (FMS) is a neurodegenerative disorder causing musculoskeletal pain, tenderness, stiffness, fatigue, and sleep disorder in the body. It is one of the most common chronic pain conditions, affecting about 6% of the world population. Being refractory, till date, no specific treatment of this disease is available. Accumulating evidences over the last few decades indicate that proinflammatory macrophages, cytokines, & chemokines as the key players in this disease. Recent findings suggest activation of Microglial cells and associated pro-inflammatory signals as one of the major causes of chronic pain in patients suffering from fibromyalgia. Increased density of iNOs/CD68+ M1 effector macrophages has been associated with neuropathic pain models. In light of this, depletion of these pro-inflammatory macrophages has been shown to reduce sensitivity to neuropathic pain. On the other hand, modulating pattern of AGEs (Advanced Glycation End-Products) can also contribute to inactivation of macrophages. These findings strongly suggest that macrophages are critical in both inflammatory and neuropathic pain. Therefore, this chapter highlights the impact of macrophage plasticity in various immunopathological aspects of fibromyalgia.


2005 ◽  
Vol 10 (3) ◽  
pp. 145-152 ◽  
Author(s):  
David K Lam ◽  
Barry J Sessle ◽  
Brian E Cairns ◽  
James W Hu

The purpose of the present review is to correlate recent knowledge of the role of peripheral ionotropic glutamate receptors in the temporomandibular joint and muscle pain from animal and human experimental pain models with findings in patients. Chronic pain is common, and many people suffer from chronic pain conditions involving deep craniofacial tissues such as temporomandibular disorders or fibromyalgia. Animal and human studies have indicated that the activation of peripheral ionotropic glutamate receptors in deep craniofacial tissues may contribute to muscle and temporomandibular joint pain and that sex differences in the activation of glutamate receptors may be involved in the female predominance in temporomandibular disorders and fibromyalgia. A peripheral mechanism involving autocrine and/or paracrine regulation of nociceptive neuronal excitability via injury or inflammation-induced release of glutamate into peripheral tissues that may contribute to the development of craniofacial pain is proposed.


Ból ◽  
2020 ◽  
Vol 21 (3) ◽  
pp. 1-15
Author(s):  
Carina Fernandes ◽  
Marina Pidal-Miranda ◽  
Noelia Samartin-Veiga ◽  
María T. Carrillo-de-la-Peña

Conditioned pain modulation (CPM) is a promising psychophysical biomarker of central pain mechanisms because it significantly discriminates patients with chronic pain from healthy controls. Nevertheless, it is unclear in what extent CPM assessed experimentally is correlated with clinical manifestations of pain. To assess the concurrent validity of CPM, we performed a systematic review of the literature reporting correlations between CPM responses and pain intensity, disability, duration, and area in patients with different chronic pain conditions. We included 32 studies that altogether encompassed data from 1958 patients and provided 62 correlations. The majority of the results (69%) reported nonsignificant correlations between CPM efficiency and clinical manifestations of pain, whereas the remaining results showed a correlation between CPM reduction and worse clinical symptoms of pain. The modality of stimulation, the type of pain, and the stimulation site appear to be critical variables that influenced the pattern of results. Given that most of the studies were conducted with highly heterogeneous methodologies and unclear risk of bias, the findings highlight the need for future studies using standardized measures of clinical and experimental pain before considering CPM as a valid biomarker of pain. We discuss some guidelines to overcome the constraints in this promising line of research.


2020 ◽  
Author(s):  
Daniele Di Lernia ◽  
Marco Lacerenza ◽  
Vivien Ainley ◽  
Giuseppe Riva

Chronic pain (CP) severely disrupts the daily life of millions. Interoception (i.e., the sensing of the physiological condition of the body) plays a pivotal role in the aetiology and maintenance of CP. Given that pain is inherently an interoceptive signal, interoceptive frameworks provide important, but currently under-utilised, approaches to this condition. Here we first investigated three facets of interoceptive perception in CP, compared with pain-free healthy controls. We then introduce a novel interoceptive treatment and demonstrate its capacity to reduce pain severity in CP, thus potentially providing effective complementary analgesic treatments. Study 1 measured ‘interoceptive accuracy’, ‘interoceptive confidence’ and ‘interoceptive sensibility’ in patients (N=60) with primary, secondary musculoskeletal, and neuropathic CP. Compared with matched pain-free controls, CP participants exhibited significantly lower interoceptive accuracy and interoceptive confidence. Pain severity was positively predicted by interoceptive accuracy, anxiety and depression, but negatively predicted by interoceptive confidence. In Study 2 we tested a promising new interoceptive treatment for CP, in a single-blind between-subjects design (N=51) with primary, secondary musculoskeletal, and neuropathic CP patients. The treatment specifically activates the C-Tactile system, by means of controlled stimulation of interoceptive unmyelinated afferents, at 3cm/s with a force of 2.5mN. This treatment led to significant pain reduction (mean 23%) in the CP treatment group, while CP controls who received comparable but non-interoceptive stimulation reported no change in pain intensity. Together, these two studies highlight the importance of interoceptive approaches to CP and demonstrate the potential of this novel method of C-Tactile fibre stimulation to reduce pain severity.


2019 ◽  
Author(s):  
Axel D. Vittersø ◽  
Gavin Buckingham ◽  
Monika Halicka ◽  
Michael J. Proulx ◽  
Janet H. Bultitude

AbstractDistorted representations of the body and peripersonal space are common in Complex Regional Pain Syndrome (CRPS), and might modulate its symptoms (e.g. asymmetric limb temperature). In pain-free people, such representations are malleable, and update when we interact with objects in our environment (e.g. during tool-use). Distortions are also common after immobilisation, but quickly normalise once movement is regained. We tested the hypothesis that people with CRPS have problems updating bodily and spatial representations, which contributes to the maintenance of their distorted representations by preventing normalization. We also explored spatially defined modulations of hand temperature asymmetries, and any influence of updating bodily and spatial representations on this effect. Thirty-six people with unilateral CRPS (18 upper limb, 18 lower limb) and 36 pain-free controls completed tool-use tasks considered to alter body and peripersonal space representations (measured using tactile distance judgements and a visuotactile crossmodal congruency task, respectively). We also tested how the arrangement (crossed, uncrossed) of the hands and tools affected hand temperature. In upper limb CRPS the non-affected arm representation updated normally, but the affected arm representation updated in the opposite to normal direction. A similar pattern was seen in lower limbs CRPS, although not significant. Furthermore, people with CRPS showed more pronounced updating of peripersonal space than the controls. We did not observe any modulation of hand temperature asymmetries by the arrangement of hands or tools. Our findings suggest enhanced malleability of bodily and spatial representations in CRPS, potentially implicating central mechanisms in the aetiology of this condition.


2020 ◽  
Vol 10 (4) ◽  
pp. 201
Author(s):  
Daniele Di Lernia ◽  
Marco Lacerenza ◽  
Vivien Ainley ◽  
Giuseppe Riva

Chronic pain (CP) severely disrupts the daily life of millions. Interoception (i.e., sensing the physiological condition of the body) plays a pivotal role in the aetiology and maintenance of CP. As pain is inherently an interoceptive signal, interoceptive frameworks provide important, but underutilized, approaches to this condition. Here we first investigated three facets of interoceptive perception in CP, compared with pain-free controls. We then introduce a novel interoceptive treatment and demonstrate its capacity to reduce pain severity in CP, potentially providing complementary analgesic treatments. Study 1 measured interoceptive accuracy, confidence and sensibility in patients (N = 60) with primary, secondary musculoskeletal, and neuropathic CP. Compared with matched controls, CP participants exhibited significantly lower interoceptive accuracy and interoceptive confidence. Pain severity was predicted positively by interoceptive accuracy, anxiety and depression, and negatively by interoceptive confidence. Study 2 tested a promising new interoceptive treatment for CP, in a single-blind between-subjects design (N = 51) with primary, secondary musculoskeletal, and neuropathic CP patients. The treatment specifically activates the C-Tactile system, by means of controlled stimulation of interoceptive unmyelinated afferents, at 3 cm/s with a force of 2.5 mN. This treatment led to significant pain reduction (mean 23%) in the CP treatment group after only 11 min, while CP controls who received comparable but non-interoceptive stimulation reported no change in pain intensity. These studies highlight the importance of interoceptive approaches to CP and demonstrate the potential of this novel method of C-Tactile stimulation to provide complementary analgesic treatments.


PLoS ONE ◽  
2019 ◽  
Vol 14 (5) ◽  
pp. e0210045 ◽  
Author(s):  
Axel D. Vittersø ◽  
Monika Halicka ◽  
Gavin Buckingham ◽  
Michael J. Proulx ◽  
Janet H. Bultitude

2021 ◽  
Vol 22 (S1) ◽  
pp. 121-126
Author(s):  
Anna Berti

AbstractYears ago, it was demonstrated (e.g., Rizzolatti et al. in Handbook of neuropsychology, Elsevier Science, Amsterdam, 2000) that the brain does not encode the space around us in a homogeneous way, but through neural circuits that map the space relative to the distance that objects of interest have from the body. In monkeys, relatively discrete neural systems, characterized by neurons with specific neurophysiological responses, seem to be dedicated either to represent the space that can be reached by the hand (near/peripersonal space) or to the distant space (far/extrapersonal space). It was also shown that the encoding of spaces has dynamic aspects because they can be remapped by the use of tools that trigger different actions (e.g., Iriki et al. 1998). In this latter case, the effect of the tool depends on the modulation of personal space, that is the space of our body. In this paper, I will review and discuss selected research, which demonstrated that also in humans: 1 spaces are encoded in a dynamic way; 2 encoding can be modulated by the use of tool that the system comes to consider as parts of the own body; 3 body representations are not fixed, but they are fragile and subject to change to the point that we can incorporate not only the tools necessary for action, but even limbs belonging to other people. What embodiment of tools and of alien limb tell us about body representations is then briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document