scholarly journals Developmental Recovery of Impaired Multisensory Processing in Autism and the Cost of Switching Sensory Modality

2019 ◽  
Author(s):  
Michael J. Crosse ◽  
John J. Foxe ◽  
Sophie Molholm

AbstractChildren with autism spectrum disorder (ASD) are often impaired in their ability to cope with and process multisensory information, which may contribute to some of the social and communicative deficits that are prevalent in this population. Amelioration of such deficits in adolescence has been observed for ecologically-relevant stimuli such as speech. However, it is not yet known if this recovery generalizes to the processing of nonsocial stimuli such as more basic beeps and flashes, typically used in cognitive neuroscience research. We hypothesize that engagement of different neural processes and lack of environmental exposure to such artificial stimuli leads to protracted developmental trajectories in both neurotypical (NT) individuals and individuals with ASD, thus delaying the age at which we observe this “catch up”. Here, we test this hypothesis using a bisensory detection task by measuring human response times to randomly presented auditory, visual and audiovisual stimuli. By measuring the behavioral gain afforded by an audiovisual signal, we show that the multisensory deficit previously reported in children with ASD recovers in adulthood by the mid-twenties. In addition, we examine the effects of switching between sensory modalities and show that teenagers with ASD incur less of a behavioral cost than their NT peers. Computational modelling reveals that multisensory information interacts according to different rules in children and adults, and that sensory evidence is weighted differently too. In ASD, weighting of sensory information and allocation of attention during multisensory processing differs to that of NT individuals. Based on our findings, we propose a theoretical framework of multisensory development in NT and ASD individuals.

2020 ◽  
Vol 30 (8) ◽  
pp. 4410-4423
Author(s):  
You Li ◽  
Carol Seger ◽  
Qi Chen ◽  
Lei Mo

Abstract Humans are able to categorize things they encounter in the world (e.g., a cat) by integrating multisensory information from the auditory and visual modalities with ease and speed. However, how the brain learns multisensory categories remains elusive. The present study used functional magnetic resonance imaging to investigate, for the first time, the neural mechanisms underpinning multisensory information-integration (II) category learning. A sensory-modality-general network, including the left insula, right inferior frontal gyrus (IFG), supplementary motor area, left precentral gyrus, bilateral parietal cortex, and right caudate and globus pallidus, was recruited for II categorization, regardless of whether the information came from a single modality or from multiple modalities. Putamen activity was higher in correct categorization than incorrect categorization. Critically, the left IFG and left body and tail of the caudate were activated in multisensory II categorization but not in unisensory II categorization, which suggests this network plays a specific role in integrating multisensory information during category learning. The present results extend our understanding of the role of the left IFG in multisensory processing from the linguistic domain to a broader role in audiovisual learning.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5242 ◽  
Author(s):  
Leidy J. Castro-Meneses ◽  
Paul F. Sowman

Background A robust feature of sensorimotor synchronization (SMS) performance in finger tapping to an auditory pacing signal is the negative asynchrony of the tap with respect to the pacing signal. The Paillard–Fraisse hypothesis suggests that negative asynchrony is a result of inter-modal integration, in which the brain compares sensory information across two modalities (auditory and tactile). The current study compared the asynchronies of vocalizations and finger tapping in time to an auditory pacing signal. Our first hypothesis was that vocalizations have less negative asynchrony compared to finger tapping due to the requirement for sensory integration within only a single (auditory) modality (intra-modal integration). However, due to the different measurements for vocalizations and finger responses, interpreting the comparison between these two response modalities is problematic. To address this problem, we included stop signals in the synchronization task. The rationale for this manipulation was that stop signals would perturb synchronization more in the inter-modal compared to the intra-modal task. We hypothesized that the inclusion of stop signals induce proactive inhibition, which reduces negative asynchrony. We further hypothesized that any reduction in negative asynchrony occurs to a lesser degree for vocalization than for finger tapping. Method A total of 30 participants took part in this study. We compared SMS in a single sensory modality (vocalizations (or auditory) to auditory pacing signal) to a dual sensory modality (fingers (or tactile) to auditory pacing signal). The task was combined with a stop signal task in which stop signals were relevant in some blocks and irrelevant in others. Response-to-pacing signal asynchronies and stop signal reaction times were compared across modalities and across the two types of stop signal blocks. Results In the blocks where stopping was irrelevant, we found that vocalization (−61.47 ms) was more synchronous with the auditory pacing signal compared to finger tapping (−128.29 ms). In the blocks where stopping was relevant, stop signals induced proactive inhibition, shifting the response times later. However, proactive inhibition (26.11 ms) was less evident for vocalizations compared to finger tapping (58.06 ms). Discussion These results support the interpretation that relatively large negative asynchrony in finger tapping is a consequence of inter-modal integration, whereas smaller asynchrony is associated with intra-modal integration. This study also supports the interpretation that intra-modal integration is more sensitive to synchronization discrepancies compared to inter-modal integration.


2021 ◽  
Author(s):  
Nikitas Angeletos Chrysaitis ◽  
Renaud Jardri ◽  
Sophie Denève ◽  
Peggy Seriès

AbstractAutism spectrum disorders have been proposed to arise from impairments in the probabilistic integration of prior knowledge with sensory inputs. Circular inference is one such possible impairment, in which excitation-to-inhibition imbalances in the cerebral cortex cause the reverberation and amplification of prior beliefs and sensory information. Recent empirical work has associated circular inference with the clinical dimensions of schizophrenia. Inhibition impairments have also been observed in autism, suggesting that signal reverberation might be present in that condition as well. In this study, we collected data from 21 participants with diagnosed autism spectrum disorders and 155 participants with a broad range of autistic traits in an online probabilistic decision-making task (the fisher task). We used previously established Bayesian models to investigate possible associations between autism or autistic traits and circular inference. No differences in prior or likelihood reverberation were found between autistic participants and those with no diagnosis. Similarly, there was no correlation between any of the circular inference model parameters and autistic traits across the whole sample. Furthermore, participants incorporated information from both priors and likelihoods in their decisions, with no relationship between their weights and psychiatric traits, contrary to what common theories for both autism and schizophrenia would suggest. These findings suggest that there is no increased signal reverberation in autism, despite the known presence of excitation-to-inhibition imbalances. They can be used to further contrast and refine the Bayesian theories of schizophrenia and autism, revealing a divergence in the computational mechanisms underlying the two conditions.Author SummaryPerception results from the combination of our sensory inputs with our brain’s previous knowledge of the environment. This is usually described as a process of Bayesian inference or predictive coding and is thought to underly a multitude of cognitive modalities. Impairments in this process are thought to explain various psychiatric disorders, in particular autism and schizophrenia, for which similar Bayesian theories have been proposed despite important differences in their symptoms. Recently, a new model of Bayesian impairment in schizophrenia has been proposed and validated using behavioural experiments, called the “circular inference” model. In the current study, we used the same task and computational modelling to explore whether circular inference could also account for autism spectrum disorder. We find that participants with autistic traits or diagnoses of autism do not present increased levels of circularity. This is the first study to investigate circular inference in autism, and one of the very few to explore possible autism and schizophrenia impairments with the same task and identical analytical methods. Our findings indicate one potential way in which the explanations of the two conditions might differ.


2021 ◽  
Vol 12 ◽  
Author(s):  
Irene Valori ◽  
Phoebe E. McKenna-Plumley ◽  
Rena Bayramova ◽  
Teresa Farroni

Atypical sensorimotor developmental trajectories greatly contribute to the profound heterogeneity that characterizes Autism Spectrum Disorders (ASD). Individuals with ASD manifest deviations in sensorimotor processing with early markers in the use of sensory information coming from both the external world and the body, as well as motor difficulties. The cascading effect of these impairments on the later development of higher-order abilities (e.g., executive functions and social communication) underlines the need for interventions that focus on the remediation of sensorimotor integration skills. One of the promising technologies for such stimulation is Immersive Virtual Reality (IVR). In particular, head-mounted displays (HMDs) have unique features that fully immerse the user in virtual realities which disintegrate and otherwise manipulate multimodal information. The contribution of each individual sensory input and of multisensory integration to perception and motion can be evaluated and addressed according to a user’s clinical needs. HMDs can therefore be used to create virtual environments aimed at improving people’s sensorimotor functioning, with strong potential for individualization for users. Here we provide a narrative review of the sensorimotor atypicalities evidenced by children and adults with ASD, alongside some specific relevant features of IVR technology. We discuss how individuals with ASD may interact differently with IVR versus real environments on the basis of their specific atypical sensorimotor profiles and describe the unique potential of HMD-delivered immersive virtual environments to this end.


i-Perception ◽  
2017 ◽  
Vol 8 (1) ◽  
pp. 204166951668802 ◽  
Author(s):  
Basil Wahn ◽  
Supriya Murali ◽  
Scott Sinnett ◽  
Peter König

Humans’ ability to detect relevant sensory information while being engaged in a demanding task is crucial in daily life. Yet, limited attentional resources restrict information processing. To date, it is still debated whether there are distinct pools of attentional resources for each sensory modality and to what extent the process of multisensory integration is dependent on attentional resources. We addressed these two questions using a dual task paradigm. Specifically, participants performed a multiple object tracking task and a detection task either separately or simultaneously. In the detection task, participants were required to detect visual, auditory, or audiovisual stimuli at varying stimulus intensities that were adjusted using a staircase procedure. We found that tasks significantly interfered. However, the interference was about 50% lower when tasks were performed in separate sensory modalities than in the same sensory modality, suggesting that attentional resources are partly shared. Moreover, we found that perceptual sensitivities were significantly improved for audiovisual stimuli relative to unisensory stimuli regardless of whether attentional resources were diverted to the multiple object tracking task or not. Overall, the present study supports the view that attentional resource allocation in multisensory processing is task-dependent and suggests that multisensory benefits are not dependent on attentional resources.


2019 ◽  
Author(s):  
Cecilie Møller ◽  
Andreas Højlund ◽  
Klaus B. Bærentsen ◽  
Niels Chr. Hansen ◽  
Joshua C. Skewes ◽  
...  

AbstractMultisensory processing facilitates perception of our everyday environment and becomes particularly important when sensory information is degraded or close to the discrimination threshold. Here, we used magnetoencephalography and an audiovisual oddball paradigm to assess the complementary role of visual information in subtle pitch discrimination at the neural level of participants with varying levels of pitch discrimination abilities, i.e., musicians and nonmusicians. The amplitude of the auditory mismatch negativity (MMNm) served as an index of sensitivity. The gain in amplitude resulting from compatible audiovisual information was larger in participants whose MMNm amplitude was smaller in the condition deviating only in the auditory dimension, in accordance with the multisensory principle of inverse effectiveness. These findings show that discrimination of even a sensory-specific feature as pitch is facilitated by multisensory information at a pre-attentive level, and they highlight the importance of considering inter-individual differences in uni-sensory abilities when assessing multisensory processing.


Author(s):  
Reddy V

Unique is a method that could help diagnosing a psychiatry condition, such as autism, by properly completing a patient's clinical history, with a comprehensive physical examination. It is important to diagnose individuals with autism spectrum, since providing a good oral health care to these people requires that the dentist has specialized knowledge, an increased awareness and care while performing the treatment, and even patient support strategies which must be adapted to each case. Every patient with autism is different to the rest, which makes their diagnosis and treatment difficult. Likewise, not all dentists are qualified to provide a good oral health care to patients diagnosed with autism spectrum, so many families must fight with that barrier every day. Finally, not every person with autism, or their families, are able to afford the cost of dental care with a qualified dentist, which is an important concern for them.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Emily T. Wood ◽  
Kaitlin K. Cummings ◽  
Jiwon Jung ◽  
Genevieve Patterson ◽  
Nana Okada ◽  
...  

AbstractSensory over-responsivity (SOR), extreme sensitivity to or avoidance of sensory stimuli (e.g., scratchy fabrics, loud sounds), is a highly prevalent and impairing feature of neurodevelopmental disorders such as autism spectrum disorders (ASD), anxiety, and ADHD. Previous studies have found overactive brain responses and reduced modulation of thalamocortical connectivity in response to mildly aversive sensory stimulation in ASD. These findings suggest altered thalamic sensory gating which could be associated with an excitatory/inhibitory neurochemical imbalance, but such thalamic neurochemistry has never been examined in relation to SOR. Here we utilized magnetic resonance spectroscopy and resting-state functional magnetic resonance imaging to examine the relationship between thalamic and somatosensory cortex inhibitory (gamma-aminobutyric acid, GABA) and excitatory (glutamate) neurochemicals with the intrinsic functional connectivity of those regions in 35 ASD and 35 typically developing pediatric subjects. Although there were no diagnostic group differences in neurochemical concentrations in either region, within the ASD group, SOR severity correlated negatively with thalamic GABA (r = −0.48, p < 0.05) and positively with somatosensory glutamate (r = 0.68, p < 0.01). Further, in the ASD group, thalamic GABA concentration predicted altered connectivity with regions previously implicated in SOR. These variations in GABA and associated network connectivity in the ASD group highlight the potential role of GABA as a mechanism underlying individual differences in SOR, a major source of phenotypic heterogeneity in ASD. In ASD, abnormalities of the thalamic neurochemical balance could interfere with the thalamic role in integrating, relaying, and inhibiting attention to sensory information. These results have implications for future research and GABA-modulating pharmacologic interventions.


2021 ◽  
pp. 174702182110267
Author(s):  
Roberto Filippi ◽  
Andrea Ceccolini ◽  
Peter Bright

The development of verbal fluency is associated with the maturation of executive function skills, such as the ability to inhibit irrelevant information, shift between tasks and hold information in working memory. Some evidence suggests that multilinguistic upbringing may underpin disadvantages in verbal fluency and lexical retrieval, but can also afford executive function advantages beyond the language system including possible beneficial effects in older age. This study examined the relationship between verbal fluency and executive function in 324 individuals across the lifespan by assessing the developmental trajectories of English monolingual and multilingual children aged 7 to 15 years (N=154) and adults from 18 to 80 years old (N=170). The childhood data indicated patterns of improvement in verbal fluency and executive function skills as a function of age. Multilingual and monolingual children had comparable developmental trajectories in all linguistic and non-linguistic measures used in the study with the exception of planning, for which monolingual children showed a steeper improvement over the studied age range relative to multilingual children. For adults, monolinguals and multilingual participants had comparable performance on all measures with the exception of non-verbal inhibitory control and response times on the Tower of London task: monolinguals showed a steeper decline associated with age. Exploratory factor analysis indicated that verbal fluency was associated with working memory and fluid intelligence in monolingual participants but not in multilinguals. These findings raise the possibility that early acquisition of an additional language may impact on the development of the functional architecture serving high-level human cognition.


PLoS ONE ◽  
2014 ◽  
Vol 9 (9) ◽  
pp. e106552 ◽  
Author(s):  
Chiara Horlin ◽  
Marita Falkmer ◽  
Richard Parsons ◽  
Matthew A. Albrecht ◽  
Torbjorn Falkmer

Sign in / Sign up

Export Citation Format

Share Document