Is there an intrinsic relationship between LFP beta oscillation amplitude and firing rate of individual neurons in monkey motor cortex?
ABSTRACTIt is a long-standing controversial issue whether an intrinsic relationship between the local field potential (LFP) beta oscillation amplitude and the spike rate of individual neurons in the motor cortex exists. Beta oscillations are prominent in motor cortical LFPs, and their relationship to the local neuronal spiking activity has been extensively studied. Many studies demonstrated that the spikes of individual neurons lock to the phase of LFP beta oscillations. However, the results concerning whether there is also an intrinsic relationship between the amplitude of LFP beta oscillations and the firing rate of individual neurons are contradictory. Some studies suggest a systematic mapping of spike rates onto LFP beta amplitude, and others find no systematic relationship. To resolve this controversy, we correlated the amplitude of LFP beta oscillations recorded in motor cortex of two male macaque monkeys with spike counts of individual neurons during visuomotor behavior, in two different manners. First, in an analysis termed task-related correlation, data obtained across all behavioral task epochs was included. These task-related correlations were frequently significant, and in majority of negative sign. Second, in an analysis termed trial-by-trial correlation, only data from a fixed pre-cue task epoch was included, and correlations were calculated across trials. Such trial-by-trial correlations were weak and rarely significant. We conclude that there is no intrinsic relationship between the firing rate of individual neurons and LFP beta oscillation amplitude in macaque motor cortex, beyond each of these signals being modulated by external factors such as the behavioral task.SIGNIFICANCE STATEMENTWe addressed the long-standing controversial issue of whether there is an intrinsic relationship between the local field potential (LFP) beta oscillation amplitude and the spike rate of individual neurons in the motor cortex. In two complementary analyses of data from macaque monkeys, we first demonstrate that the unfolding behavioral task strongly affects both the LFP beta amplitude and the neuronal spike rate, creating task-related correlations between the two signals. However, when limiting the influence of the task, by restricting our analysis to a fixed task epoch, correlations between the two signals were largely eliminated. We conclude that there is no intrinsic relationship between the firing rate of individual neurons and LFP beta oscillation amplitude in motor cortex.