scholarly journals Branched-Chain Amino Acid Metabolic Reprogramming Orchestrates Drug Resistance to EGFR Tyrosine Kinase Inhibitors

2019 ◽  
Author(s):  
Yuetong Wang ◽  
Jian Zhang ◽  
Shengxiang Ren ◽  
Dan Sun ◽  
Hsin-Yi Huang ◽  
...  

SUMMARYDrug resistance is a significant hindrance to effective cancer treatment. Although resistance mechanisms of epidermal growth factor receptor (EGFR)-mutant cancer cells to lethal EGFR tyrosine kinase inhibitors (TKI) treatment have been investigated intensively, how cancer cells orchestrate adaptive response under sublethal drug challenge remains largely unknown. Here we find that 2-hour sublethal TKI treatment elicits a transient drug-tolerant state in EGFR-mutant lung cancer cells. Continuous sublethal treatment reinforces this tolerance and eventually establishes long-term TKI resistance. This adaptive process involves H3K9 demethylation-mediated epigenetic upregulation of branched-chain amino acid aminotransferase 1 (BCAT1) and subsequent metabolic reprogramming, which promotes TKI resistance through attenuating reactive oxygen species (ROS) accumulation. Combinational treatment with TKI and ROS-inducing reagents overcomes this drug resistance in preclinical mouse models. Clinical information analyses support the correlation of BCAT1 expression with EGFR TKI response. Collectively, our findings reveal the importance of epigenetically regulated BCAT1-engaged metabolism reprogramming in TKI resistance in lung cancer.HIGHLIGHTSSublethal EGFR TKI treatment induces transient drug-tolerant state and long-term resistance in EGFR-mutant lung cancer cellsEpigenetically regulated BCAT1-mediated metabolic reprogramming orchestrates EGFR TKI-induced drug resistanceCombinational treatment with TKI and ROS-inducing agents overcomes the drug resistance induced by EGFR TKI treatment

2013 ◽  
Vol 31 (31) ◽  
pp. 3987-3996 ◽  
Author(s):  
Justin F. Gainor ◽  
Alice T. Shaw

The success of tyrosine kinase inhibitors (TKIs) in select patients with non–small-cell lung cancer (NSCLC) has transformed management of the disease, placing new emphasis on understanding the molecular characteristics of tumor specimens. It is now recognized that genetic alterations in the epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) define two unique subtypes of NSCLC that are highly responsive to genotype-directed TKIs. Despite this initial sensitivity, however, the long-term effectiveness of such therapies is universally limited by the development of resistance. Identifying the mechanisms underlying this resistance is an area of intense, ongoing investigation. In this review, we provide an overview of recent experience in the field, focusing on results from preclinical resistance models and studies of patient-derived, TKI-resistant tumor specimens. Although diverse TKI resistance mechanisms have been identified within EGFR-mutant and ALK-positive patients, we highlight common principles of resistance shared between these groups. These include the development of secondary mutations in the kinase target, gene amplification of the primary oncogene, and upregulation of bypass signaling tracts. In EGFR-mutant and ALK-positive patients alike, acquired resistance may also be a dynamic and multifactorial process that may necessitate the use of treatment combinations. We believe that insights into the mechanisms of TKI resistance in patients with EGFR mutations or ALK rearrangements may inform the development of novel treatment strategies in NSCLC, which may also be generalizable to other kinase-driven malignancies.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Xuexia Tong ◽  
Ryosuke Tanino ◽  
Rong Sun ◽  
Yukari Tsubata ◽  
Tamio Okimoto ◽  
...  

Abstract Background Protein tyrosine kinase 2 (PTK2) expression has been reported in various types of human epithelial cancers including lung cancer; however, the role of PTK2 in epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC) has not been elucidated. We previously reported that pemetrexed-resistant NSCLC cell line PC-9/PEM also acquired EGFR-TKI resistance with constitutive Akt activation, but we could not find a therapeutic target. Methods Cell viability in EGFR-mutant NSCLC cell lines was measured by the WST-8 assay. Phosphorylation antibody array assay for receptor tyrosine kinases was performed in PC-9 and PC-9/PEM cell lines. We evaluated the efficacy of EGFR and PTK2 co-inhibition in EGFR-TKI-resistant NSCLC in vitro. Oral defactinib and osimertinib were administered in mice bearing subcutaneous xenografts to evaluate the efficacy of the treatment combination in vivo. Both the PTK2 phosphorylation and the treatment combination efficacy were evaluated in erlotinib-resistant EGFR-mutant NSCLC cell lines. Results PTK2 was hyperphosphorylated in PC-9/PEM. Defactinib (PTK2 inhibitor) and PD173074 (FGFR inhibitor) inhibited PTK2 phosphorylation. Combination of PTK2 inhibitor and EGFR-TKI inhibited Akt and induced apoptosis in PC-9/PEM. The combination treatment showed improved in vivo therapeutic efficacy compared to the single-agent treatments. Furthermore, erlotinib-resistant NSCLC cell lines showed PTK2 hyperphosphorylation. PTK2 inhibition in the PTK2 hyperphosphorylated erlotinib-resistant cell lines also recovered EGFR-TKI sensitivity. Conclusion PTK2 hyperphosphorylation occurs in various EGFR-TKI-resistant NSCLCs. Combination of PTK2 inhibitor and EGFR-TKI (defactinib and osimertinib) recovered EGFR-TKI sensitivity in the EGFR-TKI-resistant NSCLC. Our study result suggests that this combination therapy may be a viable option to overcome EGFR-TKI resistance in NSCLC.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e20545-e20545 ◽  
Author(s):  
Chul Kim ◽  
Nitin Roper ◽  
Chuong D. Hoang ◽  
Eva Szabo ◽  
Maureen Connolly ◽  
...  

e20545 Background: EGFR tyrosine kinase inhibitors (EGFR-TKIs) improve progression-free survival (PFS) in patients with EGFR-mutant NSCLC, but disease progression limits efficacy. Retrospective studies show a survival benefit to LAT in patients with oligoprogressive disease (progression at a limited number of anatomic sites). Methods: This is a prospective study of LAT in patients with oligoprogressive EGFR-mutant NSCLC. Patients with no prior EGFR-TKI therapy (cohort 1) or progression after 1st/2ndgeneration EGFR-TKIs with acquired T790M mutation (cohort 2) receive osimertinib. Upon progression, eligible patients with < = 5 progressing sites undergo LAT and resume osimertinib until disease progression. Patients previously treated with osimertinib qualifying for LAT upon disease progression are also eligible for treatment (cohort 3). Primary endpoint: evaluation of safety and efficacy of reinitiation of osimertinib after LAT (assessed by PFS). Additional goals are assessment of mechanisms of resistance to osimertinib by multi-omics analyses of tumor, blood, and saliva. Results: Between 04/2016 and 01/2017, 15 patients were enrolled (cohort 1: 9, cohort 2: 3, cohort 3: 3). Median age was 57 (range 36-71). Treatment was well tolerated. The most common adverse events (AEs) were rash, diarrhea, thrombocytopenia, and alanine transaminase elevation. Grade 3/4 AEs were observed in 4 (27%) patients. Among evaluable patients, objective response rates prior to LAT in cohorts 1 and 2 were 71% (5/7) and 100% (2/2), respectively, with 6.8 months median PFS (95% CI: 3.4 months-undefined) in cohort 1 and no progressions in cohort 2. To date, 5 patients (33%; cohort 1: 2; cohort 3: 3) had LAT. Two patients with 3 progressing sites underwent a combination of surgery and radiation. Three patients with 1 progressing site underwent surgery alone. Post-LAT PFS and results of molecular analyses will be presented. Conclusions: Patients with EGFR-mutant NSCLC and oligoprogression after EGFR-TKI therapy can be safely treated with LAT. In selected patients, this approach could potentially maximize duration of EGFR-TKI treatment and prevent premature switching to other systemic therapies. Clinical trial information: NCT02759835.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Hiroki Sato ◽  
Kazuhiko Shien ◽  
Shuta Tomida ◽  
Kazuhiro Okayasu ◽  
Ken Suzawa ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Wei Wang ◽  
Xinhang Xia ◽  
Kuifei Chen ◽  
Meng Chen ◽  
Yinnan Meng ◽  
...  

BackgroundEpidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are effective in advanced EGFR-mutation non-small cell lung cancer (NSCLC) but the magnitude of tumor regression varies, and drug resistance is unavoidable. The pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP) levels are reduced or lost and acts as a tumor suppressor in many cancers. Here, we hypothesized that PHLPP is a key regulator of EGFR-TKI sensitivity and a potential treatment target for overcoming resistance to EGFR-TKI in lung cancer.MethodsCell proliferation and growth inhibition were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony formation assay. PHLPP- knockdown stable cell lines were generated by lentivirus-mediated delivery of PHLPP shRNAs. The expression of PHLPP mRNA and protein levels was detected by real-time quantitative polymerase chain reaction (qPCR) and Western blotting. Immunohistochemical (IHC) staining was performed to detect the PHLPP expression in clinical patient tissue samples. A transcriptomic assay of genome-wide RNA expressions of PHLPP in NSCLC cell lines according to gefitinib sensitivity was obtained from Gene Expression Omnibus (GEO) database. Murine xenograft model was established to verify the function of PHLPP in gefitinib resistance in vivo.ResultsPHLPP highly expressed in gefitinib-sensitive NSCLC cell lines than gefitinib-resistant NSCLC cell lines. In gefitinib-acquired resistance cell line HCC827-GR, PHLPP expression even dramatically reduced. Knockdown of PHLPP in NSCLC cells decreased cell death induced by the EGFR-TKI, while overexpression PHLPP in gefitinib-resistance NSCLC cells can enhance or restore EGFR-TKIs sensitivity. Mechanism study indicated that PHLPP downregulation attenuates the effect of EGFR-TKI on the both AKT and ERK pathway, thereby decreasing the cell death sensitivity to EGFR inhibitors. In xenograft mice, knockdown of PHLPP decreased tumor response to gefitinib and advanced tumor cells re-growth after gefitinib treatment. In clinical, PHLPP expression were reduced in the post-relapse tumor compared to that of pre-treatment, and lower pre-treatment PHLPP levels were significantly correlated with shorter progression-free survival (PFS) in patients with EGFR-mutant lung adenocarcinoma whom treated with EGFR-TKI.ConclusionsOur data strongly demonstrated that loss of PHLPP function was a key factor of EGFR-TKI resistance in NSCLC. Downregulated PHLPP expression activated PI3K-AKT and MAPK-ERK pathway which strengthened cell survival to EGFR-TKI. Therefore, PHLPP expression level was not only a potential biomarker to predict EGFR-TKIs sensitivity but also as a therapeutic target in EGFR-TKIs therapy, enhancing PHLPP expression may be a valuable strategy for delaying or overcoming EGFR-TKIs drug resistance.


Sign in / Sign up

Export Citation Format

Share Document