scholarly journals Google matrix analysis of bi-functional SIGNOR network of protein-protein interactions

2019 ◽  
Author(s):  
Klaus M. Frahm ◽  
Dima L. Shepelyansky

AbstractMotivationDirected protein networks with only a few thousand of nodes are rather complex and do not allow to extract easily the effective influence of one protein to another taking into account all indirect pathways via the global network. Furthermore, the different types of activation and inhibition actions between proteins provide a considerable challenge in the frame work of network analysis. At the same time these protein interactions are of crucial importance and at the heart of cellular functioning.ResultsWe develop the Google matrix analysis of the protein-protein network from the open public database SIGNOR. The developed approach takes into account the bi-functional activation or inhibition nature of interactions between each pair of proteins describing it in the frame work of Ising-spin matrix transitions. We also apply a recently developed linear response theory for the Google matrix which highlights a pathway of proteins whose PageRank probabilities are most sensitive with respect to two proteins selected for the analysis. This group of proteins is analyzed by the reduced Google matrix algorithm which allows to determine the effective interactions between them due to direct and indirect pathways in the global network. We show that the dominating activation or inhibition function of each protein can be characterized by its magnetization. The results of this Google matrix analysis are presented for three examples of selected pairs of proteins. The developed methods work rapidly and efficiently even for networks with several million of nodes and can be applied to various biological networks.AvailabilityThe Google matrix data and executive code of described algorithms are available at http://www.quantware.ups-tlse.fr/QWLIB/google4signornet/

2021 ◽  
Vol 23 (1) ◽  
pp. 67
Author(s):  
Ekaterina Kotelnikova ◽  
Klaus M. Frahm ◽  
Dima L. Shepelyansky ◽  
Oksana Kunduzova

Protein–protein interactions is a longstanding challenge in cardiac remodeling processes and heart failure. Here, we use the MetaCore network and the Google matrix algorithms for prediction of protein–protein interactions dictating cardiac fibrosis, a primary cause of end-stage heart failure. The developed algorithms allow identification of interactions between key proteins and predict new actors orchestrating fibroblast activation linked to fibrosis in mouse and human tissues. These data hold great promise for uncovering new therapeutic targets to limit myocardial fibrosis.


2021 ◽  
Author(s):  
Ekaterina Kotelnikova ◽  
Klaus M. Frahm ◽  
Dima L. Shepelyansky ◽  
Oksana Kunduzova

Protein-protein interactions is a longstanding challenge in cardiac remodeling processes and heart failure. Here we use the MetaCore network and the Google matrix algorithms for prediction of protein-protein interactions dictating cardiac fibrosis, a primary causes of end-stage heart failure. The developed algorithms allow to identify interactions between key proteins and predict new actors orchestrating fibroblast activation linked to fibrosis in mouse and human tissues. These data hold great promise for uncovering new therapeutic targets to limit myocardial fibrosis.


2021 ◽  
Author(s):  
Ekaterina Kotelnikova ◽  
Klaus Michael Frahm ◽  
José Lages ◽  
Dima L Shepelyansky

The MetaCore commercial database describes interactions of proteins and other chemical molecules and clusters in the form of directed network between these elements, viewed as nodes. The number of nodes goes beyond 40 thousands with almost 300 thousands links between them. The links have essentially bi-functional nature describing either activation or inhibition actions between proteins. We present here the analysis of statistical properties of this complex network applying the methods of the Google matrix, PageRank and CheiRank algorithms broadly used in the frame of the World Wide Web, Wikipedia, the world trade and other directed networks. We specifically describe the Ising PageRank approach which allows to treat the bi-functional type of protein-protein interactions. We also show that the developed reduced Google matrix algorithm allows to obtain an effective network of interactions inside a specific group of selected proteins. This method takes into account not only direct protein-protein interactions but also recover their indirect nontrivial couplings appearing due to summation over all the pathways passing via the global bi-functional network. The developed analysis allows to espablish an average action of each protein being more oriented to activation or inhibition. We argue that the described Google matrix analysis represents an efficient tool for investigation of influence of specific groups of proteins related to specific diseases.


2019 ◽  
Vol 19 (6) ◽  
pp. 413-425 ◽  
Author(s):  
Athanasios Alexiou ◽  
Stylianos Chatzichronis ◽  
Asma Perveen ◽  
Abdul Hafeez ◽  
Ghulam Md. Ashraf

Background:Latest studies reveal the importance of Protein-Protein interactions on physiologic functions and biological structures. Several stochastic and algorithmic methods have been published until now, for the modeling of the complex nature of the biological systems.Objective:Biological Networks computational modeling is still a challenging task. The formulation of the complex cellular interactions is a research field of great interest. In this review paper, several computational methods for the modeling of GRN and PPI are presented analytically.Methods:Several well-known GRN and PPI models are presented and discussed in this review study such as: Graphs representation, Boolean Networks, Generalized Logical Networks, Bayesian Networks, Relevance Networks, Graphical Gaussian models, Weight Matrices, Reverse Engineering Approach, Evolutionary Algorithms, Forward Modeling Approach, Deterministic models, Static models, Hybrid models, Stochastic models, Petri Nets, BioAmbients calculus and Differential Equations.Results:GRN and PPI methods have been already applied in various clinical processes with potential positive results, establishing promising diagnostic tools.Conclusion:In literature many stochastic algorithms are focused in the simulation, analysis and visualization of the various biological networks and their dynamics interactions, which are referred and described in depth in this review paper.


Author(s):  
Pablo Minguez ◽  
Joaquin Dopazo

Here the authors review the state of the art in the use of protein-protein interactions (ppis) within the context of the interpretation of genomic experiments. They report the available resources and methodologies used to create a curated compilation of ppis introducing a novel approach to filter interactions. Special attention is paid in the complexity of the topology of the networks formed by proteins (nodes) and pairwise interactions (edges). These networks can be studied using graph theory and a brief introduction to the characterization of biological networks and definitions of the more used network parameters is also given. Also a report on the available resources to perform different modes of functional profiling using ppi data is provided along with a discussion on the approaches that have typically been applied into this context. They also introduce a novel methodology for the evaluation of networks and some examples of its application.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Fernanda B. Correia ◽  
Edgar D. Coelho ◽  
José L. Oliveira ◽  
Joel P. Arrais

Protein-protein interactions (PPIs) can be conveniently represented as networks, allowing the use of graph theory for their study. Network topology studies may reveal patterns associated with specific organisms. Here, we propose a new methodology to denoise PPI networks and predict missing links solely based on the network topology, the organization measurement (OM) method. The OM methodology was applied in the denoising of the PPI networks of two Saccharomyces cerevisiae datasets (Yeast and CS2007) and one Homo sapiens dataset (Human). To evaluate the denoising capabilities of the OM methodology, two strategies were applied. The first strategy compared its application in random networks and in the reference set networks, while the second strategy perturbed the networks with the gradual random addition and removal of edges. The application of the OM methodology to the Yeast and Human reference sets achieved an AUC of 0.95 and 0.87, in Yeast and Human networks, respectively. The random removal of 80% of the Yeast and Human reference set interactions resulted in an AUC of 0.71 and 0.62, whereas the random addition of 80% interactions resulted in an AUC of 0.75 and 0.72, respectively. Applying the OM methodology to the CS2007 dataset yields an AUC of 0.99. We also perturbed the network of the CS2007 dataset by randomly inserting and removing edges in the same proportions previously described. The false positives identified and removed from the network varied from 97%, when inserting 20% more edges, to 89%, when 80% more edges were inserted. The true positives identified and inserted in the network varied from 95%, when removing 20% of the edges, to 40%, after the random deletion of 80% edges. The OM methodology is sensitive to the topological structure of the biological networks. The obtained results suggest that the present approach can efficiently be used to denoise PPI networks.


2021 ◽  
Author(s):  
Brennan Klein ◽  
Erik Hoel ◽  
Anshuman Swain ◽  
Ross Griebenow ◽  
Michael Levin

Abstract The internal workings of biological systems are notoriously difficult to understand. Due to the prevalence of noise and degeneracy in evolved systems, in many cases the workings of everything from gene regulatory networks to protein–protein interactome networks remain black boxes. One consequence of this black-box nature is that it is unclear at which scale to analyze biological systems to best understand their function. We analyzed the protein interactomes of over 1800 species, containing in total 8 782 166 protein–protein interactions, at different scales. We show the emergence of higher order ‘macroscales’ in these interactomes and that these biological macroscales are associated with lower noise and degeneracy and therefore lower uncertainty. Moreover, the nodes in the interactomes that make up the macroscale are more resilient compared with nodes that do not participate in the macroscale. These effects are more pronounced in interactomes of eukaryota, as compared with prokaryota; these results hold even after sensitivity tests where we recalculate the emergent macroscales under network simulations where we add different edge weights to the interactomes. This points to plausible evolutionary adaptation for macroscales: biological networks evolve informative macroscales to gain benefits of both being uncertain at lower scales to boost their resilience, and also being ‘certain’ at higher scales to increase their effectiveness at information transmission. Our work explains some of the difficulty in understanding the workings of biological networks, since they are often most informative at a hidden higher scale, and demonstrates the tools to make these informative higher scales explicit.


2021 ◽  
Author(s):  
Barnali Das ◽  
Pralay Mitra

The conventional sequence comparison-based evolutionary studies ignore other evolutionary constraints like interaction among proteins, functions of proteins and genes etc. A lot of speculations exist in literature regarding the presence of species divergence at the level of the Protein Interaction Networks. Additionally, it has been conjectured that the intra-module connections stay conserved whereas the inter-module connections change during evolution. The most important components of the biological networks are the functional modules which are more conserved among the evolutionary closer species. Here, we demonstrate an alternative method to decipher biological evolution by exploiting the topology of a spatially localized Protein Interaction Network called Protein Locality Graph (PLG). Our lossless graph compression from PLG to a power graph called Protein Cluster Interaction Network (PCIN) results in a 90% size reduction and aids in improving computational time. Further, we exploit the topology of PCIN and demonstrate our capability of deriving the correct species tree by focusing on the cross-talk between the protein modules exclusively. Our results provide new evidence that traces of evolution are not only present at the level of the Protein-Protein Interactions, but are also very much present at the level of the inter-module interactions.


Sign in / Sign up

Export Citation Format

Share Document