Sexual-dimorphism in human immune system aging
AbstractDifferences in immune function and responses contribute to health- and life-span disparities between sexes. However, the role of sex in immune system aging is not well understood. Here, we characterize peripheral blood mononuclear cells from 172 healthy adults 22-93 years of age using ATAC-seq, RNA-seq, and flow-cytometry. These data reveal a shared epigenomic signature of aging including declining naïve T cell and increasing monocyte/cytotoxic cell functions. These changes were greater in magnitude in men and accompanied by a male-specific genomic decline in B-cell specific loci. Age-related epigenomic changes first spike around late-thirties with similar timing and magnitude between sexes, whereas the second spike is earlier and stronger in men. Unexpectedly, genomic differences between sexes increase after age 65, with men having higher innate and pro-inflammatory activity and lower adaptive activity. Impact of age and sex on immune cell genomes can be visualized at https://immune-aging.jax.org to provide insights into future studies.