scholarly journals Single cell analysis of the effects of developmental lead (Pb) exposure on the hippocampus

2019 ◽  
Author(s):  
Kelly M. Bakulski ◽  
John F. Dou ◽  
Robert C. Thompson ◽  
Christopher Lee ◽  
Lauren Y. Middleton ◽  
...  

AbstractBackgroundLead (Pb) exposure is ubiquitous and has permanent developmental effects on childhood intelligence and behavior and adulthood risk of dementia. The hippocampus is a key brain region involved in learning and memory, and its cellular composition is highly heterogeneous. Pb acts on the hippocampus by altering gene expression, but the cell type-specific responses are unknown.ObjectiveExamine the effects of perinatal Pb treatment on adult hippocampus gene expression, at the level of individual cells, in mice.MethodsIn mice perinatally exposed to control water (n=4) or a human physiologically-relevant level (32 ppm in maternal drinking water) of Pb (n=4), two weeks prior to mating through weaning, we tested for gene expression and cellular differences in the hippocampus at 5-months of age. Analysis was performed using single cell RNA-sequencing of 5,258 cells from the hippocampus by 10x Genomics Chromium to 1) test for gene expression differences averaged across all cells by treatment; 2) compare cell cluster composition by treatment; and 3) test for gene expression and pathway differences within cell clusters by treatment.ResultsGene expression patterns revealed 12 cell clusters in the hippocampus, mapping to major expected cell types (e.g. microglia, astrocytes, neurons, oligodendrocytes). Perinatal Pb treatment was associated with 12.4% more oligodendrocytes (P=4.4×10−21) in adult mice. Across all cells, differential gene expression analysis by Pb treatment revealed cluster marker genes. Within cell clusters, differential gene expression with Pb treatment (q<0.05) was observed in endothelial, microglial, pericyte, and astrocyte cells. Pathways up-regulated with Pb treatment were protein folding in microglia (P=3.4×10−9) and stress response in oligodendrocytes (P=3.2×10−5).ConclusionBulk tissue analysis may be confounded by changes in cell type composition and may obscure effects within vulnerable cell types. This study serves as a biological reference for future single cell studies of toxicant or neuronal complications, to ultimately characterize the molecular basis by which Pb influences cognition and behavior.

2020 ◽  
Vol 176 (2) ◽  
pp. 396-409
Author(s):  
Kelly M Bakulski ◽  
John F Dou ◽  
Robert C Thompson ◽  
Christopher Lee ◽  
Lauren Y Middleton ◽  
...  

Abstract Lead (Pb) exposure is ubiquitous with permanent neurodevelopmental effects. The hippocampus brain region is involved in learning and memory with heterogeneous cellular composition. The hippocampus cell type-specific responses to Pb are unknown. The objective of this study is to examine perinatal Pb treatment effects on adult hippocampus gene expression, at the level of individual cells. In mice perinatally exposed to control water or a human physiologically relevant level (32 ppm in maternal drinking water) of Pb, 2 weeks prior to mating through weaning, we tested for hippocampus gene expression and cellular differences at 5 months of age. We sequenced RNA from 5258 hippocampal cells to (1) test for treatment gene expression differences averaged across all cells, (2) compare cell cluster composition by treatment, and (3) test for treatment gene expression and pathway differences within cell clusters. Gene expression patterns revealed 12 hippocampus cell clusters, mapping to major expected cell types (eg, microglia, astrocytes, neurons, and oligodendrocytes). Perinatal Pb treatment was associated with 12.4% more oligodendrocytes (p = 4.4 × 10−21) in adult mice. Across all cells, Pb treatment was associated with expression of cell cluster marker genes. Within cell clusters, Pb treatment (q &lt; 0.05) caused differential gene expression in endothelial, microglial, pericyte, and astrocyte cells. Pb treatment upregulated protein folding pathways in microglia (p = 3.4 × 10−9) and stress response in oligodendrocytes (p = 3.2 × 10−5). Bulk tissue analysis may be influenced by changes in cell type composition, obscuring effects within vulnerable cell types. This study serves as a biological reference for future single-cell toxicant studies, to ultimately characterize molecular effects on cognition and behavior.


2021 ◽  
Author(s):  
Wenjing Ma ◽  
Sumeet Sharma ◽  
Peng Jin ◽  
Shannon L Gourley ◽  
Zhaohui Qin

The rapid proliferation of single-cell RNA-sequencing (scRNA-seq) datasets have revealed cell heterogeneity at unprecedented scales. Several deconvolution methods have been developed to decompose bulk experiments to reveal cell type contributions. However, these methods lack power in identifying the accurate cell type composition when having a considerable amount of sub-cell types in the reference dataset. Here, we present LRcell, a R Bioconductor package (http://bioconductor.org/packages/release/bioc/html/LRcell.html) aiming to identify specific sub-cell type(s) that drives the changes observed in a bulk RNA-seq differential gene expression experiment. In addition, LRcell provides pre-embedded marker genes computed from putative single-cell RNA-seq experiments as options to execute the analyses.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Tianyuan Lu ◽  
Jessica C. Mar

Abstract Background It is a long established fact that sex is an important factor that influences the transcriptional regulatory processes of an organism. However, understanding sex-based differences in gene expression has been limited because existing studies typically sequence and analyze bulk tissue from female or male individuals. Such analyses average cell-specific gene expression levels where cell-to-cell variation can easily be concealed. We therefore sought to utilize data generated by the rapidly developing single cell RNA sequencing (scRNA-seq) technology to explore sex dimorphism and its functional consequences at the single cell level. Methods Our study included scRNA-seq data of ten well-defined cell types from the brain and heart of female and male young adult mice in the publicly available tissue atlas dataset, Tabula Muris. We combined standard differential expression analysis with the identification of differential distributions in single cell transcriptomes to test for sex-based gene expression differences in each cell type. The marker genes that had sex-specific inter-cellular changes in gene expression formed the basis for further characterization of the cellular functions that were differentially regulated between the female and male cells. We also inferred activities of transcription factor-driven gene regulatory networks by leveraging knowledge of multidimensional protein-to-genome and protein-to-protein interactions and analyzed pathways that were potential modulators of sex differentiation and dimorphism. Results For each cell type in this study, we identified marker genes with significantly different mean expression levels or inter-cellular distribution characteristics between female and male cells. These marker genes were enriched in pathways that were closely related to the biological functions of each cell type. We also identified sub-cell types that possibly carry out distinct biological functions that displayed discrepancies between female and male cells. Additionally, we found that while genes under differential transcriptional regulation exhibited strong cell type specificity, six core transcription factor families responsible for most sex-dimorphic transcriptional regulation activities were conserved across the cell types, including ASCL2, EGR, GABPA, KLF/SP, RXRα, and ZF. Conclusions We explored novel gene expression-based biomarkers, functional cell group compositions, and transcriptional regulatory networks associated with sex dimorphism with a novel computational pipeline. Our findings indicated that sex dimorphism might be widespread across the transcriptomes of cell types, cell type-specific, and impactful for regulating cellular activities.


Author(s):  
Isabella N. Grabski ◽  
Rafael A. Irizarry

AbstractSingle-cell RNA sequencing (scRNA-seq) quantifies gene expression for individual cells in a sample, which allows distinct cell-type populations to be identified and characterized. An important step in many scRNA-seq analysis pipelines is the annotation of cells into known cell-types. While this can be achieved using experimental techniques, such as fluorescence-activated cell sorting, these approaches are impractical for large numbers of cells. This motivates the development of data-driven cell-type annotation methods. We find limitations with current approaches due to the reliance on known marker genes or from overfitting because of systematic differences between studies or batch effects. Here, we present a statistical approach that leverages public datasets to combine information across thousands of genes, uses a latent variable model to define cell-type-specific barcodes and account for batch effect variation, and probabilistically annotates cell-type identity. The barcoding approach also provides a new way to discover marker genes. Using a range of datasets, including those generated to represent imperfect real-world reference data, we demonstrate that our approach substantially outperforms current reference-based methods, in particular when predicting across studies. Our approach also demonstrates that current approaches based on unsupervised clustering lead to false discoveries related to novel cell-types.


F1000Research ◽  
2019 ◽  
Vol 7 ◽  
pp. 1522 ◽  
Author(s):  
Brendan T. Innes ◽  
Gary D. Bader

Single-cell RNA sequencing (scRNAseq) represents a new kind of microscope that can measure the transcriptome profiles of thousands of individual cells from complex cellular mixtures, such as in a tissue, in a single experiment. This technology is particularly valuable for characterization of tissue heterogeneity because it can be used to identify and classify all cell types in a tissue. This is generally done by clustering the data, based on the assumption that cells of a particular type share similar transcriptomes, distinct from other cell types in the tissue. However, nearly all clustering algorithms have tunable parameters which affect the number of clusters they will identify in data. The R Shiny software tool described here, scClustViz, provides a simple interactive graphical user interface for exploring scRNAseq data and assessing the biological relevance of clustering results. Given that cell types are expected to have distinct gene expression patterns, scClustViz uses differential gene expression between clusters as a metric for assessing the fit of a clustering result to the data at multiple cluster resolution levels. This helps select a clustering parameter for further analysis. scClustViz also provides interactive visualisation of: cluster-specific distributions of technical factors, such as predicted cell cycle stage and other metadata; cluster-wise gene expression statistics to simplify annotation of cell types and identification of cell type specific marker genes; and gene expression distributions over all cells and cell types. scClustViz provides an interactive interface for visualisation, assessment, and biological interpretation of cell-type classifications in scRNAseq experiments that can be easily added to existing analysis pipelines, enabling customization by bioinformaticians while enabling biologists to explore their results without the need for computational expertise. It is available at https://baderlab.github.io/scClustViz/.


2018 ◽  
Author(s):  
Idan Nurick ◽  
Ron Shamir ◽  
Ran Elkon

AbstractBackgroundOur appreciation of the critical role of the 3D organization of the genome in gene regulation is steadily increasing. Recent 3C-based deep sequencing techniques elucidated a hierarchy of structures that underlie the spatial organization of the genome in the nucleus. At the top of this hierarchical organization are chromosomal territories and the megabase-scale A/B compartments that correlate with transcriptional activity within cells. Below them are the relatively cell-type invariant topologically associated domains (TADs), characterized by high frequency of physical contacts between loci within the same TAD and are assumed to function as regulatory units. Within TADs, chromatin loops bring enhancers and target promoters to close spatial proximity. Yet, we still have only rudimentary understanding how differences in chromatin organization between different cell types affect cell-type specific gene expression programs that are executed under basal and challenged conditions.ResultsHere, we carried out a large-scale meta-analysis that integrated Hi-C data from thirteen different cell lines and dozens of ChIP-seq and RNA-seq datasets measured on these cells, either under basal conditions or after treatment. Pairwise comparisons between cell lines demonstrated the strong association between modulation of A/B compartmentalization, differential gene expression and transcription factor (TF) binding events. Furthermore, integrating the analysis of transcriptomes of different cell lines in response to various challenges, we show that 3D organization of cells under basal conditions constrains not only gene expression programs and TF binding profiles that are active under the basal condition but also those induced in response to treatment.ConclusionsOur results further elucidate the role of dynamic genome organization in regulation of differential gene expression between different cell types, and indicate the impact of intra-TAD enhancer-promoter interactions that are established under basal conditions on both the basal and treatment-induced gene expression programs.


2019 ◽  
Author(s):  
Aleksandr Ianevski ◽  
Anil K Giri ◽  
Tero Aittokallio

AbstractSingle-cell transcriptomics enables systematic charting of cellular composition of complex tissues. Identification of cell populations often relies on unsupervised clustering of cells based on the similarity of the scRNA-seq profiles, followed by manual annotation of cell clusters using established marker genes. However, manual selection of marker genes for cell-type annotation is a laborious and error-prone task since the selected markers must be specific both to the individual cell clusters and various cell types. Here, we developed a computational method, termed ScType, which enables data-driven selection of marker genes based solely on given scRNA-seq data. Using a compendium of 7 scRNA-seq datasets from various human and mouse tissues, we demonstrate how ScType enables unbiased, accurate and fully-automated single-cell type annotation by guaranteeing the specificity of marker genes both across cell clusters and cell types. The widely-applicable method is implemented as an interactive web-tool (https://sctype.fimm.fi), connected with comprehensive database of specific markers.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1522 ◽  
Author(s):  
Brendan T. Innes ◽  
Gary D. Bader

Single-cell RNA sequencing (scRNAseq) represents a new kind of microscope that can measure the transcriptome profiles of thousands of individual cells from complex cellular mixtures, such as in a tissue, in a single experiment. This technology is particularly valuable for characterization of tissue heterogeneity because it can be used to identify and classify all cell types in a tissue. This is generally done by clustering the data, based on the assumption that cells of a particular type share similar transcriptomes, distinct from other cell types in the tissue. However, nearly all clustering algorithms have tunable parameters which affect the number of clusters they will identify in data. The R Shiny software tool described here, scClustViz, provides a simple interactive graphical user interface for exploring scRNAseq data and assessing the biological relevance of clustering results. Given that cell types are expected to have distinct gene expression patterns, scClustViz uses differential gene expression between clusters as a metric for assessing the fit of a clustering result to the data at multiple cluster resolution levels. This helps select a clustering parameter for further analysis. scClustViz also provides interactive visualisation of: cluster-specific distributions of technical factors, such as predicted cell cycle stage and other metadata; cluster-wise gene expression statistics to simplify annotation of cell types and identification of cell type specific marker genes; and gene expression distributions over all cells and cell types. scClustViz provides an interactive interface for visualisation, assessment, and biological interpretation of cell-type classifications in scRNAseq experiments that can be easily added to existing analysis pipelines, enabling customization by bioinformaticians while enabling biologists to explore their results without the need for computational expertise. It is available at https://baderlab.github.io/scClustViz/.


2020 ◽  
Vol 36 (12) ◽  
pp. 3910-3912 ◽  
Author(s):  
Oscar Franzén ◽  
Johan L M Björkegren

Abstract Summary Single-cell RNA sequencing (scRNA-seq) is a technology to measure gene expression in single cells. It has enabled discovery of new cell types and established cell type atlases of tissues and organs. The widespread adoption of scRNA-seq has created a need for user-friendly software for data analysis. We have developed a web server, alona that incorporates several of the most popular single-cell analysis algorithms into a flexible pipeline. alona can perform quality filtering, normalization, batch correction, clustering, cell type annotation and differential gene expression analysis. Data are visualized in the web browser using an interface based on JavaScript, allowing the user to query genes of interest and visualize the cluster structure. alona accepts a compressed gene expression matrix and identifies cell clusters with a graph-based clustering strategy. Cell types are identified from a comprehensive collection of marker genes or by specifying a custom set of marker genes. Availability and implementation The service runs at https://alona.panglaodb.se and the Python package can be downloaded from https://oscar-franzen.github.io/adobo/. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Author(s):  
Dylan M Cable ◽  
Evan Murray ◽  
Vignesh Shanmugam ◽  
Simon Zhang ◽  
Michael Z Diao ◽  
...  

Spatial transcriptomics enables spatially resolved gene expression measurements at near single-cell resolution. There is a pressing need for computational tools to enable the detection of genes that are differentially expressed across tissue context for cell types of interest. However, changes in cell type composition across space and the fact that measurement units often detect transcripts from more than one cell type introduce complex statistical challenges. Here, we introduce a statistical method, Robust Cell Type Differential Expression (RCTDE), that estimates cell type-specific patterns of differential gene expression while accounting for localization of other cell types. By using general log-linear models, we provide a unified framework for defining and identifying gene expression changes for a wide-range of relevant contexts: changes due to pathology, anatomical regions, physical proximity to specific cell types, and cellular microenvironment. Furthermore, our approach enables statistical inference across multiple samples and replicates when such data is available. We demonstrate, through simulations and validation experiments on Slide-seq and MERFISH datasets, that our approach accurately identifies cell type-specific differential gene expression and provides valid uncertainty quantification. Lastly, we apply our method to characterize spatially-localized tissue changes in the context of disease. In an Alzheimer's mouse model Slide-seq dataset, we identify plaque-dependent patterns of cellular immune activity. We also find a putative interaction between tumor cells and myeloid immune cells in a Slide-seq tumor dataset. We make our RCTDE method publicly available as part of the open source R package https://github.com/dmcable/spacexr.


Sign in / Sign up

Export Citation Format

Share Document